Pulmonary

The Southwest Journal of Pulmonary and Critical Care publishes articles broadly related to pulmonary medicine including thoracic surgery, transplantation, airways disease, pediatric pulmonology, anesthesiolgy, pharmacology, nursing  and more. Manuscripts may be either basic or clinical original investigations or review articles. Potential authors of review articles are encouraged to contact the editors before submission, however, unsolicited review articles will be considered.

Rick Robbins, M.D. Rick Robbins, M.D.

December 2022 Pulmonary Case of the Month: New Therapy for Mediastinal Disease

Lewis J. Wesselius MD

Mayo Clinic Arizona

Scottsdale, AZ USA

 

History of Present Illness

A 43-year-old woman complained of persistent cough over 1 year with mild increasing dyspnea on exertion. She denied fever, sweats or weight loss. She had noted fatigue and dry cough, as well as shortness of breath, particularly when supine.

Past Medical History (PMH), Social History (SH), Family History (FH)

  • An outside bronchoscopy done in 2019 with washings and biopsy showing only some non-specific inflammation
  • Life-long nonsmoker
  • Not on any chronic medications
  • Had only lived in Arizona, although has travelled in other states
  • There is no significant family history

Physical Examination

  • Prominent vascularity on anterior chest

What should be done at this time? (Click on the correct answer to be directed to the 2nd of 6 pages)

  1. Chest X-ray
  2. Obtain old x-rays
  3. Pulmonary function testing
  4. Serology for coccidioidomycosis
  5. All of the above
Cite as: Wesselius LJ. December 2022 Pulmonary Case of the Month: New Therapy for Mediastinal Disease. 2022;25(6):92-96. doi: https://doi.org/10.13175/swjpccs054-22 PDF
Read More
Rick Robbins, M.D. Rick Robbins, M.D.

September 2020 Pulmonary Case of the Month: An Apeeling Example

Lewis J. Wesselius, MD

Department of Pulmonary Medicine

Mayo Clinic Arizona

Scottsdale, AZ USA

 

History of Present Illness

A 67-year-old woman who developed a chronic nonproductive cough beginning in October 2019. After 4 weeks, she consulted her primary care physician.

PMH, SH, and FH

  • She had a history of several prior pneumonias, including respiratory syncytial virus in 2018
  • Irritable bowel syndrome
  • Hypertension
  • Prior smoker: 28 pack years, none since 1999
  • FH negative

Physical Examination

Her physical examination is recorded as unremarkable other than decreased nasal flow.

Which of the following is/are common cause(s) of a chronic cough? (Click on the correct answer to be directed to the second of seven pages)

  1. Cough-variant asthma
  2. Gastroesophageal reflux disease
  3. Upper airway cough syndrome (UACS) secondary to rhinosinus diseases
  4. 1 and 3
  5. All of the above

Cite as: Wesselius LJ. September 2020 pulmonary case of the month: an apeeling example. Southwest J Pulm Crit Care. 2020;21(3):56-63. doi: https://doi.org/10.13175/swjpcc048-20 PDF

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

Case Report: The Importance of Screening for EVALI

Vanessa Josef MD, MS

George Tu, MD, FCCP

 

Department of Internal Medicine and Lung Center of Nevada

HCA MountainView Hospital

Las Vegas, Nevada, USA

 

Abstract

E-cigarette or vaping product use associated lung injury (EVALI) is an epidemic that has swept the United States by storm starting in Sept 2019. E-cigarettes or vaping was initially advertised as a “safer” alternative to smoking cigarettes when they entered the market in 2007. Only now are we are starting to see the complications of a not so harmless behavior. Many times, EVALI can present similar to community acquired pneumonia (CAP), which can cause a clinical conundrum when despite adequate antibiotic coverage, patients’ respiratory status tend to decline. Through our case report, we demonstrate and stress the importance of early screening for e-cigarette and vaping use in social history to increase clinical suspicion of EVALI and provide early intervention if a patient does not respond to CAP treatment, in hopes of identifying more cases of EVALI and igniting future research. 

Introduction

The recent outbreaks of E-cigarette or vaping product use associated lung injury (EVALI) in Sept 2019, has placed the spotlight on the dangers of vaping. EVALI is a form of acute or subacute lung injury whose pathogenesis is unknown and is thought to be a spectrum of disease, rather than a single process. It has many findings such as organizing pneumonia, diffuse alveolar damage or acute fibrinous pneumonitis that are bronchiocentric and accompanied by bronchiolitis (1). If not identified quickly, EVALI has led to non-invasive ventilation, intubation and mechanical ventilation and even death in, otherwise, healthy young adults (1). The CDC confirmed 57 deaths and 2,602 reported cases of EVALI throughout the United States from Aug 2019 to Jan 2020, all of whom were between the ages of 18-34 (2,3). The paucity of knowledge within the medical community with regards to the disease, its pathogenesis and targeted treatment puts clinicians at a disadvantage. We report a case of a 30-year-old male who presented to our hospital with complaints of flu-like symptoms who was initially thought to have community acquired pneumonia but was later diagnosed with EVALI in order to raise awareness, illustrate how crucial screening can affect patient outcome and the need for further investigations of this severe respiratory illness. 

Case Presentation

A 30-year-old Hispanic male with significant past medical history of intracranial hemorrhage secondary to arteriovenous malformation and craniotomy (2016) was admitted to our hospital in December 2019 after experiencing productive cough, subjective fevers, malaise, night sweats, dizziness, and fatigue for 3 days. He denied having any sick contacts or obtaining the flu vaccine, or any recent hospitalization. His admitting diagnosis was sepsis due to community acquired pneumonia and he was found to have acute renal failure which was pre-renal in nature.

Clinical findings on admission were as follows: body temperature 37°C, blood pressure 116/75mmHg, heart rate 129 beats/min, respiratory rate 18 breaths/min and oxygen saturation 99% on room air. Physical examination revealed diminished breath sounds on the right lower lobe upon auscultation. The patient’s breathing did not appear labored and he was able to speak full sentences. Laboratory tests revealed: white blood cell count of 13,000 x 109/L with 88.8% neutrophils, BUN/creatinine was 29/1.59 (elevated compared to last admission in 2016), urine toxicology was positive for cannabinoids, urinalysis showed proteinuria of 100 and the rest of the biochemical testing were within normal ranges.

The initial chest x-ray (Figures 1 and 2) was read as interval development of interstitial type infiltrates in the perihilar and lower lobe distribution bilaterally, favoring pneumonia, compared to his pervious chest x-ray from 2016 which had no evidence of acute cardiopulmonary process (Figure 3).

Figures 1 and 2. Chest radiography (PA and lateral views) from the day of admission.

Figure 3. Chest radiograph from a previous admission in 2016 showing no acute cardiopulmonary process.

Sepsis bolus was given in the emergency department, blood cultures were drawn, and patient was started on ceftriaxone and azithromycin for community acquired pneumonia. Overnight, The patient spiked fever twice of 39°C at 2am and 4am the next morning. Antibiotics were broadened to vancomycin and piperacillin-tazobactam and blood cultures were repeated. Patient endorsed dyspnea and increased work of breathing requiring 2L nasal cannula. He remained tachycardic with his heart rate in the 110s despite adequate fluid resuscitation and antibiotic coverage. He also spiked an additional fever of 39.3°C at 8am. Arterial blood gas obtained showed pH 7.49, pCO2 33, pO2 70, HCO3 25 on 2L nasal cannula indicating acute hypoxic respiratory failure and respiratory alkalosis. Since renal function normalized, CT angiogram of the chest (Figure 4) was obtained. Although negative for pulmonary embolism, it showed extensive bilateral ground-glass lung opacities characteristic of pulmonary edema or pneumonia, noted predominantly in the lower and middle lung zones with sparing of the periphery.

Figure 4. CT angiography of the chest in lung windows, almost 24hrs after presentation to the emergency department.

Pulmonology was consulted. Upon further questioning it was discovered the patient has been vaping CBD oil and THC for about 5 years. He vapes approximately 1-2 dabbed cartridges per week which he normally obtains from a dispensary and his friends. The last time he vaped was 3 days prior to admission. He denied smoking tobacco, having a history of childhood asthma. He was started on methylprednisolone 40mg IV BID. Because his temperature became mildly elevated at 37.9°C in the afternoon, it was decided to take him for a bronchoalveolar lavage (BAL) the following day.

Respiratory viral panel, urine Legionella and urine Streptococcus pneumoniae, HIV 4th generation screen, sputum culture and blood cultures were all negative. Procalcitonin was 3.88 ng/ml. BAL cytology revealed non-specific pulmonary macrophages, benign bronchial epithelial cells, and mucus. It was negative for fungal organisms, cytomegalovirus, Mycoplasma, tuberculosis, Pneumocystis jirovecii, Legionella, and malignant cells. Gram stain was negative as well. 

No other events occurred during the rest of his hospital course. Extensive counseling provided regarding cessation of vaping, which the patient expressed he will no longer do. His respiratory symptoms improved with the start of steroids and he was discharged on hospital day 6 with Augmentin and a 10-day prednisone taper.

Discussion

Currently, EVALI is a diagnosis of exclusion, rather than part of the initial screening for patients who present to the hospital with respiratory complaints. During our team’s initial assessment of the patient, vaping was not asked based off the reported history, imaging studies, and labs obtained by the emergency department because it appeared to be a straightforward case of sepsis secondary to community acquired pneumonia (CAP). However, despite adequate antibiotic coverage with ceftriaxone and azithromycin our patient continued to spike high fevers overnight. He did not have any risk factors for MRSA or Pseudomonas that would call for broad empiric coverage when he was first admitted based off the IDSA 2019 guidelines for treating CAP (7).

Despite sepsis fluid resuscitation, our patient remained tachycardic where his heart rate ranged between 110-120s. CT angiogram of the chest to rule out pulmonary embolism could not be done when he was admitted due to acute renal failure. A ventilation-perfusion scan would not be an appropriate study at the time due to patient’s abnormal chest x-ray. Thus, the details of the lung parenchyma could not be appreciated at the time of admission. With his continual fever spikes, we ordered the following labs to try and identify the type of infection, the possibility of a superimposed infection or resistance to the current antimicrobial regimen and if the patient was immunocompromised: flu antigens, urine Legionella and Streptococcus pneumoniae, respiratory viral panel (adenovirus, human metapneumovirus, influenza A & B, parainfluenza 1, 2 & 3, RSV, rhinovirus), HIV 4th generation screen, sputum culture, procalcitonin and repeat blood cultures. That same morning, his antibiotics were broadened to vancomycin and piperacillin-tazobactam.

Since the patient endorsed increased work of breathing and required 2L nasal cannula when he was initially on room air when he first arrived, pulmonary embolism (PE) had to be ruled out. With his renal function back to normal, we were able to get the CT angiogram of the chest which was negative for PE but showed the largely affected parenchyma. Pulmonology was consulted because of the irregular findings and sudden decline. Based off the peripheral sparing which is characteristic for EVALI and his urine toxicology testing positive for cannabinoids, further questioning about his social history was obtained. The patient’s admission to vaping THC and CBD oil for several years and that he obtains his cartridges from dispensaries and his friends, increased the suspicion for EVALI. Based on the current literature and reports from the CDC, EVALI is largely associated with the use of THC and products obtained from informal sources such as family/friends, dealers or online sellers (1). Many times, these unregulated products contain vitamin E acetate, which is currently thought to be the culprit ingredient igniting the destruction of lung parenchyma (4). The answer remains unclear if the cause of EVALI is an inhalation injury and/or is there an intrinsic reaction sparked by the chemical reactions between the various products that causes tissue injury.

He was immediately started on methylprednisolone 40mg IV BID, based on the recommended dosing of intravenous steroids of 1mg/kg (6). However, the patient’s temperature started to rise again despite the initiation of empiric antibiotics and steroids on the same day. BAL was performed the next morning to rule out infection, malignancy or any other structural issues and only revealed non-specific pulmonary macrophages, benign bronchial epithelial cells, and mucus. The patient clinically improved with the continued regimen of vancomycin, piperacillin-tazobactam and methylprednisolone IV.

There have been notable case reports with regards to EVALI that illustrate its various presentations and some of the barriers that make it difficult to diagnose. Salzman et al. (8) presented a case of a 27-year-old Caucasian female who developed acute eosinophilic pneumonia associated with electronic cigarettes. CBC at the time of admission showed WBC of 24,400 with 47% eosinophils. Although she admitted to vaping both nicotine and THC products for at least three years, three months prior to admission, she was vaping exclusively JUUL pods with nicotine blueberry and mint flavors. Her symptoms were severe enough that she required a one day stay in the ICU. She was treated with oral prednisone 50mg daily for a total of 5 days and oral doxycycline 100mg BID with improvement in her symptoms. This brings up the question whether her prior vaping history already jeopardized her lung parenchyma thus putting her at higher risk for developing EVALI.

In Schmitz’ (9) case report of a 38-year-old obese female with fibromyalgia on chronic prednisone (20mg daily), she admits to having started vaping CBD oil one month prior to admission. On BAL she was found to have diffuse upper and lower airway erythema with significant coughing, elevated eosinophil count (59%) and foamy macrophages which is associated with EVALI. She was started on methylprednisolone 1000mg daily, without antibiotics and experienced rapid improvement within a couple of days.

Works and Stack (5) discussed the case of a 20-year-old male who had several hospital admissions due to complaints of productive cough, high grade fever, gastrointestinal symptoms of diarrhea/nausea and 20lb unintentional weight loss over 3 weeks. The patient initially was treated at another hospital with ceftriaxone, levofloxacin and azithromycin and did not complete the course of antibiotics because they left against medical advice since they did not experience any improvement. On admission, the patient was found to have a very high leukocytosis with WBC of 44,800 and was not started immediately on empiric antibiotics. Instead, he was started on prednisone 1mg/kg and Bactrim after the BAL failed to yield an infectious cause. The patient was also noted to have obtain his THC cartridges from an outside source, like our patient.

Panse’s (10) case of a 25-year-old male who previously smoked 1-2packs per day and quit 6 months prior to admission was not forthcoming about vaping. Both CT scans showed multifocal ground-glass opacities with features of small airway obstruction. He underwent bronchoscopy and transbronchial biopsy which did not provide enough information to make a diagnosis. A video-assisted thorascopic lung biopsy was performed and showed acute and organized lung injury with interstitial edema, type II pneumocyte hyperplasia, alveolar fibrin deposition, acute fibrinous pneumonitis, lipid-laden macrophages and foci of organizing pneumonia consistent with EVALI. This is a prime example of how omission of vaping history delays diagnosis, leads to invasive procedures and although it did not happen in this particular situation, can result in death (10). Unlike the patient in Panse’s case, our patient easily admitted to vaping. Non-disclosure of medically relevant information such as vaping, is a problem clinicians will run into especially since it is a key piece of information needed to diagnose EVALI. Many patients withhold information from their doctors, especially those that they may find embarrassing, feel that they will be judge or lectured, or not wanting to hear about associated harm. Quantifying how many patients are withholding information or how many cases are not being accounted for because the person does not want to admit they are vaping would be difficult.

Formal diagnostic criteria for EVALI has not been agreed upon which can be attributed to the various forms of lung injury. We were able to diagnose our patient based of the suggested criteria of e-cigarette or vaping in the previous 90 days, lung opacities on chest x-ray or CT, exclusion of infection, and the absence of alternative diagnosis (cardiac, neoplastic or rheumatologic) (1). In a case series by Kalininskiy et al. (12), the University of Rochester Medical Center (Rochester, New York, USA) created a clinical practice algorithm to allow for the rapid identification of suspected EVALI based on history, clinical presentation and chest imaging, which is similar to the CDC however it focuses on vaping activity from the past 30 days rather than 90 days.

Currently, the treatment of EVALI is empiric antibiotics for community acquired pneumonia, systemic glucocorticoids in those with worsening symptoms, and supportive therapy with supplemental oxygen (6). In our case, the patient improved with the combination of vancomycin, piperacillin-tazobactam and methylprednisolone. The efficacy of systemic glucocorticoids is still unknown (1). However, it still remains unclear whether it was the combination of those specific antibiotics in conjunction with steroids, the combination of vancomycin and piperacillin-tazobactam only or solely systemic glucocorticoids. Since CAP is more common, it should not be overlooked and go untreated. Further investigation needs to be done for more targeted therapy.

The long-term effects of EVALI in those who were treated are still not well known. It is currently recommended for repeat imaging to determine if the treatment regimen was successful. However, many patients are lost to follow-up, as was the case for our patient due to lack of insurance.

Our case report illustrates how crucial early identification of EVALI affects patient care. It is imperative clinicians screen for the disease to prevent further complications. We recommend the following screening criteria: although the population greatly affected by the EVALI epidemic have been predominantly males between the ages of 18-34 (37% of the cases reported to the CDC as of Jan 14, 2020 are age 18-24, and 24% are 25-34, with a 66% male predominance) it should include all those who vape or use e-cigarettes regardless of age or gender as illustrated with the aforementioned case reports (13). Patients who presents with respiratory symptoms, especially if they are similar to pneumonia, such as dyspnea, increased work of breathing, fevers/chills, productive cough, chest pain, pleurisy, hemoptysis, and noted hypoxemia should be asked more than just smoking history with regards to cigarettes. They should be asked about prior E-cigarettes usage or vaping in the past, when was the last use, what kind of products were used and were they concentrated/dabbed and where it was obtained. Clinical suspicion should be increased if patients admit to THC or CBD use, but nicotine, flavorings and additives should not be disregarded. Urine drug screen should be ordered if there is a strong clinical suspicion, and the patient is denying prior THC use. EVALI has also been associated with gastrointestinal symptoms of abdominal pain, diarrhea, and nausea/vomiting. It is important to rule out infectious causes, by asking about sick contacts, recent hospitalizations, history of HIV and use of immunologic agents that can cause one to be immunocompromised. Patients should be screened about airway diseases such as asthma, COPD, and interstitial lung disease since they could have already caused chronic changes to lung parenchyma. There is still so much that the medical community does not know about EVALI. Further investigations still need to be pursued to improve the medical community’s diagnosis and treatment of this serious respiratory epidemic.

Disclaimer

This research was supported (in whole or in part) by HCA and/or an HCA affiliated entity. The views expressed in this publication represent those of the author(s) and do not necessarily represent the official views of HCA or any of its affiliated entities.

References

  1. Layden JE, Ghinai I, Pray I, et al. Pulmonary illness related to e-cigarette use in Illinois and Wisconsin - final report. N Engl J Med. 2020 Mar 5;382(10):903-16. [CrossRef] [PubMed]
  2. Centers for Disease Control. Outbreak of lung injury associated with the use of e-cigarette, or vaping, products. January 17, 2020.Available at: https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html#key-facts (accessed 3/10/20).
  3. Ellington S, Salvatore PP, Ko J, et al. Update: product, substance-use, and demographic characteristics of hospitalized patients in a nationwide outbreak of e-cigarette, or vaping, product use-associated lung injury - United States, August 2019-January 2020. MMWR Morb Mortal Wkly Rep. 2020 Jan 17;69(2):44-9. [CrossRef] [PubMed]
  4. Blount BC, Karwowski MP, Shields PG, et al. Vitamin E acetate in bronchoalveolar-lavage fluid associated with EVALI. N Engl J Med. 2020 Feb 20;382(8):697-705. [CrossRef] [PubMed]
  5. Works K, Stack L. E‐cigarette or vaping product‐use‐associated lung injury (EVALI): A case report of a pneumonia mimic with severe leukocytosis and weight loss. JACEP Open. 2020;1-3. [CrossRef]
  6. Triantafyllou GA, Tiberio PJ, Zou RH, et al. Vaping-associated acute lung injury: a case series. Am J Respir Crit Care Med. 2019 Dec 1;200(11):1430-1. [CrossRef] [PubMed]
  7. Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia. an official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019 Oct 1;200(7):e45-e67. [CrossRef] [PubMed]
  8. Salzman GA, Alqawasma M, Asad H. Vaping associated lung injury [EVALI]: an explosive United States epidemic. Mo Med. 2019 Nov-Dec;116(6):492-6. [PubMed]
  9. Schmitz ED. Severe respiratory disease associated with vaping: a case report. Southwest J Pulm Crit Care. 2019;19[3]:105-9.[CrossRef]
  10. Panse PM, Feller FF, Butt YM, Gotway MB. February 2020 imaging case of the month: an emerging cause for infiltrative lung abnormalities. Southwest J Pulm Crit Care. 2020;20(2):43-58. [CrossRef]
  11. Levy AG, Scherer AM, Zikmund-Fisher BJ, Larkin K, Barnes GD, Fagerlin A. Prevalence of and factors associated with patient nondisclosure of medically relevant information to clinicians. JAMA Netw Open. 2018 Nov 2;1(7):e185293. [CrossRef] [PubMed]
  12. Kalininskiy A, Bach CT, Nacca NE, Ginsberg G, Marraffa J, Navarette KA, McGraw MD, Croft DP. E-cigarette, or vaping, product use associated lung injury (EVALI): case series and diagnostic approach. Lancet Respir Med. 2019 Dec;7(12):1017-26. [CrossRef] [PubMed]
  13. Centers for Disease Control. Outbreak of lung injury associated with the use of e-cigarette, or vaping, products. February 5, 2020. Available at:  https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html#map-cases (accessed 3/10/20).

Cite as: Josef V, Tu G. Case report: the importance of screening for EVALI. Southwest J Pulm Crit Care. 2020;20(3)87-94. doi: https://doi.org/10.13175/swjpcc012-20 PDF 

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

Brief Review of Coronavirus for Healthcare Professionals February 10, 2020

Richard A. Robbins, MD1

Stephen A. Klotz, MD2

1Phoenix Pulmonary and Critical Care Research and Education Foundation, Gilbert, AZ USA

2Division of Infectious Diseases, Department of Internal Medicine, University of Arizona, Tucson, AZ USA

 

The epidemic of coronavirus (2019-nCoV) near Wuhan City and the surrounding Hubei Province in China has received extensive news coverage. Some have predicted the virus will cause a worldwide pandemic (1). The CDC has an extensive website discussing over numerous pages whom to suspect, how to diagnose and how to treat 2019-nCoV. 2019-nCoV represents the most recent of the severe coronaviral infections. Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) are also caused by coronaviruses that have jumped from animals to humans like 2019-nCoV. It should be remembered that there are only 12 confirmed cases of 2019-nCoV in the US and the mortality rate appears to be only about 3% which is lower than SARS or MERS (2,3). This could be offset by a greater infectiousness of 2019-nCoV resulting in more aggregate infectious, and hence, deaths.

Anyone with a fever who has recently visited the epidemic area in China or been exposed to someone with known 2019-nCoV should be quarantined (2). The only reliable symptom has been fever (98%) (4). Cough (76%), myalgia/fatigue (44%), sputum production (28%), headache (8%), hemoptysis (5%), and diarrhea (3%) were much less common. The clinical course was characterized by the development of dyspnea in 55% of patients and lymphopenia in 66%.

Persons suspected of 2019-nCoV should be quarantined and reported to their local state health departments. The incubation period appears about 2-14 days and is spread by person-to-person transmission based on the previous MERS epidemic (2). There is no need to wear masks in the US where the incidence is low and they are likely ineffective (2).

Diagnosis is made real-time reverse transcription polymerase chain reaction (rRT-PCR) assay. This was only available from the CDC but very recently the CDC has made kits available to state health departments (2).

At present the treatment for 2019-nCoV is supportive in appropriate respiratory isolation to protect healthcare workers. A randomized, controlled trial of Gilead’s antiviral drug remdesivir used to treat Ebola is currently underway in China in hopes that it will be an effective treatment for 2019-nCoV (5).

Please be aware that this information is current as of February 10, 2020. It is likely to change.

References

  1. McNeil DG Jr. Wuhan coronavirus looks increasingly like a pandemic, experts say. New York Times. February 2, 2020. Available at: https://www.nytimes.com/2020/02/02/health/coronavirus-pandemic-china.html (accessed 2/10/20).
  2. Centers for Disease Control. 2019 Novel Coronavirus (2019-nCoV) in the U.S. February 10, 2020. Available at: https://www.cdc.gov/coronavirus/2019-ncov/cases-in-us.html (accessed 2/10/20).
  3. Worldometer. Novel coronavirus (2019-nCoV) mortality rate. Available at: https://www.worldometers.info/coronavirus/coronavirus-death-rate/ (accessed 2/10/20).
  4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Jan 24. pii: S0140-6736(20)30183-5. [Epub ahead of print] [CrossRef] [PubMed]
  5. Wetsman N. An experimental antiviral medication might help fight the new coronavirus. The Verge. Feb 4, 2020. Available at: https://www.theverge.com/2020/2/4/21122327/coronavirus-experimental-medication-treatment-wuhan-china-gilead-hiv (accessed 2/10/20).

Cite as: Robbins RA, Klotz SA. Brief review of coronavirus for healthcare professionals February 10, 2020. Southwest J Pulm Crit Care. 2020;20(2):69-70. doi: https://doi.org/10.13175/swjpcc011-20 PDF 

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

December 2019 Pulmonary Case of the Month: A 56-Year-Old Woman with Pneumonia

Lewis J. Wesselius, MD

Department of Pulmonary Medicine

Mayo Clinic Arizona

Scottsdale, AZ USA

 

History of Present Illness

A 56-year-old woman complained of 6 weeks of increasing cough and shortness of breath. She had been treated for pneumonia with antibiotics, but when she failed to improve, she was begun on prednisone. She was receiving oxygen at 4 L/min by nasal cannula at the time she was seen.

PMH, SH, and FH

Her past medical history, social history and family were unremarkable other than a previous history of silicone breast implants. She was a nonsmoker.

Physical Examination

Her physical examination showed bibasilar crackles but was otherwise unremarkable.

Radiography

Her chest x-ray is shown in Figure 1.

Figure 1. Patient’s chest x-ray taken 6 weeks after the beginning of her illness.

Which of the following should be done at this time? (Click on the correct answer to be directed to the second of seven pages)

  1. Coccidioidomycosis serology
  2. Sputum gram stain and culture
  3. Thoracic CT scan
  4. 1 and 3
  5. All of the above

Cite as: Wesselius LJ. December 2019 Pulmonary case of the month: a 56-year-old woman with pneumonia. Southwest J Pulm Crit Care. 2019;19(6):149-55. doi: https://doi.org/10.13175/swjpcc067-19 PDF

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

September 2019 Pulmonary Case of the Month: An HIV Patient with a Fever

William P. Diehl IV, DO

Nicholas Villalobos, MD

 

Department of Internal Medicine

University of New Mexico

Albuquerque, NM USA

 

History of Present Illness

A 33-year old transgender male to female presented from human immunodeficiency virus (HIV) clinic for two months of fevers, intermittent shortness of breath, cough with blood streaked sputum, headache, and nausea. The clinic provider was concerned when labs showed up trending HIV viral load (3.3 million copies) and an absolute CD4 count of 57.

Past Medical History, Social History and Family History

The patient had a history of stage-III HIV diagnosed in 2014 on bictegravir, emtricitabine, tenofovir (Biktarvy) and latent tuberculosis (TB) diagnosed 2017 on isoniazid and B6. She is from Nicaragua and arrived in Albuquerque, NM in 2017. Social history is pertinent for sex trafficking and methamphetamine use.

Physical Examination

Upon admission, the patient’s vital signs were notable for a temperature of 39.2 degrees Celsius, blood pressure of 114/71 mmHg, oxygen saturation of 95% on room air with a respiratory rate of 18 breaths per minute. Physical exam was notable for an absence of rash, palpable lymphadenopathy or cachexia.

Which of the following should be done? (Click on the correct answer to be directed to the second of six pages)

  1. Blood cultures
  2. Lumbar puncture
  3. Sputum for AFB and tuberculosis
  4. 1 & 3
  5. All of the above

Cite as: Diehl WP IV, Villalobos N. September 2019 pulmonary case of the month: an HIV patient with a fever. Southwest J Pulm Crit Care. 2019;19(3):87-94. doi: https://doi.org/10.13175/swjpcc056-19 PDF 

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

March 2019 Pulmonary Case of the Month: A 59-Year-Old Woman with Fatigue

Lewis J. Wesselius, MD1

Michael B. Gotway, MD2

1Department of Pulmonary Medicine and 2Department of Radiology

Mayo Clinic Arizona

Scottsdale, AZ USA

  

History of Present Illness

A 59-year-old woman from Kingman, Arizona had a one-year history of fatigue with some shortness of breath. For this reason, she saw her primary care physician.

Past Medical History, Social History and Family History

She has no significant past medical history. She does not smoke. Family history is noncontributory.

Physical Examination

Physical examination was unremarkable.

Which of the following should be done? (Click on the correct answer to be directed to the second of seven pages)

  1. Chest x-ray
  2. Complete blood count
  3. Electrolytes, blood urea nitrogen and creatinine
  4. Liver panel
  5. All of the above

Cite as: Wesselius LJ, Gotway MB. March 2019 pulmonary case of the month: A 59-year-old woman with fatigue. Southwest J Pulm Crit Care. 2019;18(3):52-7. doi: https://doi.org/10.13175/swjpcc008-19 PDF 

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

Co-Infection with Nocardia and Mycobacterium Avium Complex (MAC) in a Patient with Acquired Immunodeficiency Syndrome

Zahira Babwani DO

Kenneth Wojnowski Jr DO

Sunil Kumar MD

Broward Health Medical Center

Fort Lauderdale, FL USA

Abstract

We present a case in which a patient with acquired immunodeficiency syndrome (AIDS) and nocardiosis was found to have co-infection with Mycobacterium avium complex (MAC). Despite the fact that MAC is a known colonizer of the pulmonary system, ​ it is possible to have co-infection and a high degree of suspicion is necessary to ensure prompt treatment of both organisms. We wish to describe how radiologic findings were instrumental in guiding our differential diagnosis.

Case Report

History of Present Illness: A 64-year-old man with history of alcohol and tobacco abuse presented with a chronic, productive cough for 5-6 months. Associated symptoms included shortness of breath and 30-pound weight loss. He denied all other symptoms.

Physical Exam: Pertinent positives revealed temporal wasting, poor dental hygiene, oral thrush and diffuse rhonchi bilaterally. Initial vital signs were within normal limits.

Laboratory and Radiology: Pertinent laboratory findings revealed leukocytosis with a left shift. Viral respiratory polymerase chain reaction (PCR) testing was negative. Human immunodeficiency virus (HIV) testing was positive with a CD4 count of 46 cells/mm3. QuantiFERON gold testing was negative. Sputum cultures, acid-fast bacilli (AFB) and blood cultures were obtained. Bronchoalveolar lavage (BAL) was performed with no evidence of Pneumocystis jirovecii (PJP). Chest X-ray (CXR) and computed tomography (CT) of the chest (Figure 1) revealed a multifocal right lung abscess with complex pleural fluid, empyema, nodular cavitary lesion in the left lower lobe and hilar lymphadenopathy.

Figure 1. Panel A: initial chest X-ray shows a complex infiltrate and effusion in the right lung. There is a cavitary lesion with air-fluid level vs lung abscess on the right. A nodule or consolidation is present in the left lung base. Panel B: A representative image from the initial CT of the chest showing a multifocal right lung abscess and complex pleural fluid.

Hospital Course: ​After admission, the patient was started on broad spectrum antimicrobials with vancomycin and piperacillin-tazobactam. A thoracentesis was performed due to right sided pleural effusion which yielded 65 cc of thick, purulent, green fluid. Thoracotomy with complete decortication of the right lung was performed with biopsies of the abscesses. Two 32-French chest tubes were placed due to the presence of multiple intraparenchymal lung abscesses, loculations, and empyema. Biopsy and pleural fluid cultures grew gram positive, beaded organisms which were later identified as nocardia, with no evidence of MAC or Mycobacterium tuberculosis (MTB). The patient was started on amikacin, meropenem and trimethoprim-sulfamethoxazole for newly diagnosed pulmonary nocardiosis. MAC prophylaxis was initiated due to his low CD4 count. After initiation of therapy for nocardiosis, three sputum AFB cultures began to stain positive. Since nocardiosis stains weakly positive for AFB, we initially did not suspect non-tuberculous Mycobacteria (NTM). Repeat CT scan of the chest (Figure 2) revealed ground glass opacities, nodular densities and both mediastinal and hilar lymphadenopathy.

Figure 2. Panel A: after initiation of treatment for nocardiosis, improvement of right empyema and cavitary lesion with bilateral patchy airspace disease right greater than left. Panel B: CT of the chest after initiation of treatment for nocardiosis, prominent lymph nodes in the hilar regions and mediastinum. less cavitation than the previous study. There are innumerable ground glass and nodular densities throughout both lungs, right greater than left.

Suspicion for active MAC co-infection was raised, the prophylactic dose of azithromycin was increased to the treatment dose, and ethambutol was initiated. After three weeks of intravenous amikacin, meropenem and trimethoprim-sulfamethoxazole the patient showed considerable improvement in his respiratory symptoms and was transitioned to oral trimethoprim-sulfamethoxazole for outpatient treatment of nocardiosis with continuation of ethambutol and clarithromycin for MAC.

Discussion

The Mycobacterium Avium Complex ​(MAC) is a Non-tuberculous mycobacterium (NTM) that is commonly found in patients with HIV and a CD4 count of less than 50. The diagnosis of NTM is challenging due to the fact that the organism is a known colonizer of the pulmonary system (1) ​. Supportive radiologic evidence is needed to distinguish colonization from active infection (2).

Common CT findings of nocardiosis include ground glass opacities, lung nodules, cavitation, pleural effusion and masses (3)​. The presence of mediastinal and hilar lymphadenopathy is the most common finding in immunosuppressed patients with MAC infection but is not​ a usual feature of pulmonary nocardiosis (3,4) ​. Our​ patient’s repeat CT scan showed mediastinal and hilar lymphadenopathy with improvement of cavitary lesions which suggests improvement of CT findings related to nocardiosis, but persistent findings related to NTM (5). This led us to believe that the patient was appropriately treated for nocardiosis, but with an underlying presence of active MAC infection that presented with atypical radiographic findings. As per the American Thoracic Society (ATS) guidelines for NTM pulmonary infection (6)​ ​, this patient’s pulmonary symptoms, radiological evidence on the chest CT, and positive AFB cultures from at least two separate expectorated sputum samples lends credibility to MAC as a true active infection in the setting of nocardiosis and AIDS. The patient was appropriately placed on clarithromycin and ethambutol as an outpatient, and our suspicions were confirmed for MAC with no evidence of MTB by PCR testing 5 weeks after initial AFB smears were collected.

Co-infection with Nocardiosis and MAC may be underestimated since they both often develop in immunocompromised hosts. MAC, along with other NTM species account for 20% of mycobacterium pulmonary infections in HIV infected patients (5)​. Nocardia accounts for less than 3% of pulmonary infections in HIV infected patients (5)​. A high degree of clinical suspicion is imperative to promptly treat infection with both organisms.

References

  1. Young J, Balagopal A, Reddy NS, Schlesinger LS. Differentiating colonization from infection can be difficult Nontuberculous mycobacterial infections: Diagnosis and treatment. Patient Care. 2007. Available at: http://www.patientcareonline.com/infection/differentiating-colonization-infection-can-be-difficult-nontuberculous-mycobacterial-infections (accessed 10/3/18).
  2. Trinidad JM, Teira R, Zubero S, Santamaría JM.Coinfection by Nocardia asteroides and Mycobacterium avium- intracellulare in a patient with AIDS. Enferm Infecc Microbiol Clin. 1992 Dec;10(10):630-1. [PubMed]
  3. Kanne JP, Yandow DR, Mohammed TL, Meyer CA. CT findings of pulmonary nocardiosis. AJR Am J Roentgenol. 2011 Aug;197(2):W266-72. [CrossRef] [PubMed]
  4. Erasmus JJ, McAdams HP, Farrell MA, Patz EF Jr. Pulmonary nontuberculous mycobacterial infection: radiologic manifestations. Radiographics. 1999 Nov-Dec;19(6):1487-505. [PubMed]
  5. Benito N, Moreno A, Miro JM, Torres A. Pulmonary infections in HIV-infected patients: an update in the 21st century. Eur Respir J. 2012 Mar;39(3):730-45. [CrossRef] [PubMed]
  6. Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007 Feb 15;175(4):367-416. [CrossRef] [PubMed]

Cite as: Babwani Z, Wojnowski K Jr, Kumar S. Co-Infection with Nocardia and Mycobacterium avium complex (MAC) in a patient with acquired immunodeficiency syndrome. Southwest J Pulm Crit Care. 2019;18(1):22-5. doi: https://doi.org/10.13175/swjpcc123-18 PDF

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

December 2018 Pulmonary Case of the Month: A Young Man with Multiple Lung Masses

Lewis J. Wesselius, MD

Department of Pulmonary Medicine

Mayo Clinic Arizona

Scottsdale, AZ USA

 

History of Present Illness

A 28-year-old man from Tennessee has been feeling ill with malaise and weight loss for the past 3 months. He had been in the in the Palm Springs area a few weeks prior to becoming ill. He works as a musician.

Past Medical History, Social History and Family History

He has a history of Wolf-Parkinson-White syndrome and had a prior ablation procedure at age 16. He does not smoke tobacco but does smoke marijuana occasionally. Family history is noncontributory.

Physical Examination

Physical examination was unremarkable.

Which of the following are indicated at this time? (Click on the correct answer to be directed to the second of eight pages)

  1. Bronchoscopy with EBUS
  2. Chest X-ray
  3. VATS
  4. 1 and 3
  5. All of the above

Cite as: Wesselius LJ. December 2018 pulmonary case of the month: a young man with multiple lung masses. Southwest J Pulm Crit Care. 2018;17(6):138-45. doi: https://doi.org/10.13175/swjpcc118-18 PDF 

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

Phrenic Nerve Injury Post Catheter Ablation for Atrial Fibrillation

Payal Sen, MD1 

Uddalak Majumdar, MD2 

Ali Imran Saeed, MD1

1University of New Mexico

Albuquerque, NM USA

2Cleveland Clinic Foundation

Cleveland, Ohio USA

 

Abstract

Objective: Phrenic nerve injury (PNI) is a complication of catheter ablation treatment of atrial fibrillation (AF). This condition can mimic that of comorbid conditions like congestive heart failure (CHF) and chronic obstructive pulmonary disease (COPD).

Case details: A 77-year-old woman with past medical history of heart failure with preserved ejection fraction and mild COPD, presented with dyspnea for 8 days. One week ago, she had undergone radiofrequency catheter ablation for persistent symptomatic AF. After the ablation, she reported dyspnea during PCP and pulmonary office visits and was given increasing doses of diuretics and inhalers since her symptoms were attributed to acute exacerbation of heart failure in the setting of COPD. However, a chest x-ray showed elevation of the right hemidiaphragm, and she had a positive sniff test. She was thus diagnosed with right sided phrenic nerve palsy and was treated with oxygen therapy.

Discussion: Phrenic nerve injury can be diagnosed via clinical exam, chest x-ray and sniff test. A sniff Test which shows paradoxical elevation of the paralyzed hemidiaphragm with inspiration, compared with the rapid descent of the normal hemidiaphragm.

Conclusion: Phrenic nerve palsy is a complication which occurs in 6.6 percent of cases, post catheter ablation procedure for atrial fibrillation. This condition can mimic pulmonary conditions like acute exacerbation of COPD. Not keeping this complication in mind can lead to biased diagnostic reasoning and missed or delayed diagnosis.

Introduction

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia (1). In the past decade, catheter ablation of AF has evolved from an investigational procedure to a frequent therapeutic one (2). Phrenic nerve injury (PNI) is a complication of ablation that pulmonologists should be familiar with, due to its increasing incidence (3). This condition can mimic that of comorbid conditions like congestive heart failure (CHF) and chronic obstructive pulmonary disease (COPD). Hence it is important to develop clinical suspicion of phrenic nerve injury, and correlate onset of symptoms to the ablation, to prevent missed or delayed diagnosis, and to avoid falling prey to availability bias.

Case Report

History of Present Illness: A 77-year-old Caucasian woman with past medical history of heart failure with preserved ejection fraction and mild COPD (GOLD Stage 1), presented with dyspnea and right sided chest discomfort for 7 days. One week ago, she had undergone radiofrequency catheter ablation at the University of New Mexico, for persistent symptomatic AF. After the ablation, she reported dyspnea during PCP and pulmonary office visits, which was attributed to acute exacerbation of heart failure in the setting of COPD. She had been given increasing doses of diuretics which did not relieve her symptoms. A short course of azithromycin and prednisone had also been prescribed for possible acute exacerbation of COPD, but her symptoms had remained unchanged. Review of systems were negative for fever, chills, cough, leg swelling and hemoptysis. She led an active lifestyle, did not require oxygen, and had quit smoking 10 years ago. There was no history of cardio- respiratory diseases in the family.

Physical Examination:

Vitals: Temperature: 97.1°F, Pulse – 88/minute, RR 22/minute, BP –

140/70 mm Hg., Spo2 – 90% in Room air (baseline >95 percent).

She appeared to be in mild distress. Baseline dry weight had not increased. She had no clinical signs of heart failure- no peripheral edema, no JVD, no S3, no bibasilar crackles. There were decreased breath sounds in the base of the right lung but no rales or rhonchi. No significant wheezing was heard in any of the lobes of the lungs.

No clubbing or cyanosis was noted. The rest of the exam was unremarkable with a normal abdominal, and skin exam. There was no lymphadenopathy.

Laboratory: White blood cell count 10,000/mm3, hemoglobin 11 g/dL, with normal electrolytes, liver function tests and negative troponins. Arterial blood gases on room air showed a pH 7.38, paO2 of 62 mm Hg, pCO2 41 mm Hg and HCO3- 25.

EKG: negative for signs of ischemia.

Radiography: Chest radiography showed an elevated right diaphragm (Figure 1).

Figure 1. A: PA chest radiograph and B: 3 weeks earlier for comparison.

Sniff test performed under fluoroscopy showed paradoxical elevation of the right hemidiaphragm with inspiration, compared with rapid descent of the left hemidiaphragm, confirming right hemidiaphragm paralysis (Figure 2).

Figure 2. Static images from sniff test under fluoroscopy: A: pre-sniff. B: post-sniff. When the patient sniffs in, the left hemidiaphragm moves downwards but right hemidiaphragm does not (actually moves upwards very slightly).

After obtaining proper imaging, the patient was finally diagnosed with right-sided diaphragmatic paralysis due to phrenic nerve injury from the catheter ablation procedure done to treat AF. She was discharged with home oxygen and her symptoms have resolved. Follow up clinic visits revealed complete resolution of symptoms.

Discussion

Ectopic discharges from pulmonary veins are an important cause of atrial fibrillation, the most common sustained cardiac arrhythmia (1). Calkins et al. (4) carried out a study in 2009, where they showed statistically significant improvement in symptoms and quality of life in patients receiving ablation therapy versus those patients who received anti arrhythmic drugs (4). Traditionally, isolating the pulmonary vein by point-by-point radiofrequency catheter ablation was the cornerstone of catheter ablation strategies for the treatment of atrial fibrillation (2). However, this procedure had various complications such as thromboembolism, cardiac perforation, injury to adjacent structures and pulmonary vein stenosis (5). Hence, with the hope of finding an effective alternative approach with less complications, cryothermal ablation was started. This particular procedure involves electrically isolating pulmonary veins, by creating circumferential lesions by means of a cryoballoon catheter (6). Nonetheless, in both techniques, the most common complication is hemi‐diaphragmatic paralysis, due to phrenic nerve injury. This especially occurs whilst trying to isolate the right superior pulmonary vein (3). The approximate incidence of this complication is close to 3–11% (7). It is thought that the phrenic nerve gets injured due to the close anatomic relationship of the phrenic nerve to the heart (Figure 3).

Figure 3. Thoracic CT scan showing anatomical relationships (yellow star is the right phrenic nerve).

Both the right and the left phrenic nerves can get damaged - the right phrenic nerve is specifically at risk when ablations are carried out in the superior caval vein and the right superior pulmonary vein, and the left phrenic nerve is liable to damage during lead implantation into the great cardiac and left obtuse marginal veins (8). In our patient, the right phrenic nerve, which runs along the lateral surfaces of the superior vena cava and right atrium, was injured by energy delivered to the adjacent area during ablation.

In 2005 Bunch et al. (9) investigated the specific mechanism of phrenic nerve injury. Their study revealed that the phrenic nerve tended to retain heat after ablation. This phenomenon resulted in higher local temperatures with subsequent energy deliveries, causing early transient injury. Andrade et al. (3) in 2014, were the first to define this phrenic nerve injury histopathologically. According to them, phrenic nerve injury consisted of Wallerian degeneration characterized by loss of large myelinated axons with variable degrees of endoneural edema, vacuolated macrophages, myelin ovoids, and myelin digestion chambers (6).

Phrenic nerve injury can be diagnosed on clinical exam, and via a chest X-ray. Thereafter one can confirm the diagnosis with the sniff test or phrenic nerve stimulation/diaphragm electromyography. An upright chest x-ray will reveal an elevated diaphragm on the affected side. This test is sensitive, but not specific for the diagnosis of unilateral diaphragmatic paralysis (10). Another frequently done test is the sniff test which shows paradoxical elevation of the paralyzed hemidiaphragm with inspiration, compared with the rapid descent of the normal hemidiaphragm (11). The sniff test has more than 90 percent sensitivity (11). In 2014, Linhart et al. (12) performed studies to show that fluoroscopic assessment of diaphragm movement during spontaneous breathing was more sensitive for the diagnosis of phrenic nerve injury as compared to SVC pacing (12). It has also been seen that EMG‐guided approach results in less damage to the phrenic nerve and a significant reduction in hemi‐diaphragmatic paralysis as compared to current methods of abdominal palpation and fluoroscopy (13).

In unilateral diaphragmatic paralysis, patients are usually asymptomatic, have good prognosis and do not always need treatment. This is specifically true in the absence of underlying lung disease (14). Another procedure often done is the surgical plication of the affected hemidiaphragm (15). In bilateral diaphragm paralysis, ventilatory failure often occurs and these patients may require continuous positive airway pressure or mechanical ventilation and tracheostomy (16). According to Kauffman (17) in 2014, functional restoration of the paralyzed diaphragm should also be part of the standard treatment algorithm in managing symptomatic patients.

Conclusion

Phrenic nerve palsy is a complication which occurs in about 6 percent of cases post catheter ablation procedure for atrial fibrillation. This condition can mimic pulmonary conditions like acute exacerbation of COPD. It is important to develop clinical suspicion and correlate onset of symptoms to the ablation. Not keeping this complication in mind can lead to biased diagnostic reasoning and missed or delayed diagnosis.

References

  1. Yamazaki M, Filgueiras-Rama D, Berenfeld O, Kalifa J. Ectopic and reentrant activation patterns in the posterior left atrium during stretch-related atrial fibrillation. Prog Biophys Mol Biol. 2012 Oct-Nov;110(2-3):269-77. [CrossRef] [PubMed]
  2. Pedrote A, Acosta J, Jauregui-Garrido B, Frutos-Lopez M, Arana-Rueda E. Paroxysmal atrial fibrillation ablation: Achieving permanent pulmonary vein isolation by point-by-point radiofrequency lesions. World J Cardiol. 2017 Mar 26;9(3):230-40. [CrossRef] [PubMed]
  3. Andrade JG, Dubuc M, Ferreira J, Guerra PG, Landry E, Coulombe N, et al. Histopathology of cryoballoon ablation-induced phrenic nerve injury. J Cardiovasc Electrophysiol. 2014 Feb;25(2):187-94. [CrossRef] [PubMed]
  4. Calkins H, Reynolds MR, Spector P, et al.  Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and metaanalyses. Circ Arrhythm Electrophysiol. 2009 Aug;2(4):349-61. [CrossRef] [PubMed]
  5. Sarabanda AV, Bunch TJ, Johnson SB, et al. Efficacy and safety of circumferential pulmonary vein isolation using a novel cryothermal balloon ablation system. J Am Coll Cardiol. 2005 Nov 15;46(10):1902-12. [CrossRef] [PubMed]
  6. Andrade JG, Khairy P, Guerra PG, et al. Efficacy and safety of cryoballoon ablation for atrial fibrillation: a systematic review of published studies. Heart Rhythm. 2011 Sep;8(9):1444-51. [CrossRef] [PubMed]
  7. Omran H, Gutleben KJ, Molatta S, et al. Second generation cryoballoon ablation for persistent atrial fibrillation: an updated meta-analysis. Clin Res Cardiol. 2018 Feb;107(2):182-92. [CrossRef] [PubMed]
  8. Sanchez-Quintana D, Cabrera JA, Climent V, Farre J, Weiglein A, Ho SY. How close are the phrenic nerves to cardiac structures? Implications for cardiac interventionalists. J Cardiovasc Electrophysiol. 2005 Mar;16(3):309-13. [CrossRef] [PubMed]
  9. Bunch TJ, Bruce GK, Mahapatra S, et al. Mechanisms of phrenic nerve injury during radiofrequency ablation at the pulmonary vein orifice. J Cardiovasc Electrophysiol. 2005 Dec;16(12):1318-25. [CrossRef] [PubMed]
  10. Chetta A, Rehman AK, Moxham J, Carr DH, Polkey MI. Chest radiography cannot predict diaphragm function. Respir Med. 2005 Jan;99(1):39-44. [CrossRef] [PubMed]
  11. Alexander C. Diaphragm movements and the diagnosis of diaphragmatic paralysis. Clin Radiol. 1966 Jan;17(1):79-83. [CrossRef] [PubMed]
  12. Linhart M, Nielson A, Andrie RP, et al. Fluoroscopy of spontaneous breathing is more sensitive than phrenic nerve stimulation for detection of right phrenic nerve injury during cryoballoon ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2014 Aug;25(8):859-65. [CrossRef] [PubMed]
  13. Miyazaki S, Ichihara N, Nakamura H, et al. Prospective evaluation of electromyography-guided phrenic nerve monitoring during superior vena cava isolation to anticipate phrenic nerve injury. J Cardiovasc Electrophysiol. 2016 Apr;27(4):390-5. [CrossRef] [PubMed]
  14. Piehler JM, Pairolero PC, Gracey DR, Bernatz PE. Unexplained diaphragmatic paralysis: a harbinger of malignant disease? J Thorac Cardiovasc Surg. 1982 Dec;84(6):861-4. [PubMed]
  15. Kuniyoshi Y, Yamashiro S, Miyagi K, Uezu T, Arakaki K, Koja K. Diaphragmatic plication in adult patients with diaphragm paralysis after cardiac surgery. Ann Thorac Cardiovasc Surg. 2004 Jun;10(3):160-6. [PubMed]
  16. Davis J, Goldman M, Loh L, Casson M. Diaphragm function and alveolar hypoventilation. Q J Med. 1976 Jan;45(177):87-100. [PubMed]
  17. Kaufman MR, Elkwood AI, Colicchio AR, et al. Functional restoration of diaphragmatic paralysis: an evaluation of phrenic nerve reconstruction. Ann Thorac Surg. 2014 Jan;97(1):260-6. [CrossRef]

Cite as: Sen P, Majumdar U, Saeed AI. Phrenic nerve injury post catheter ablation for atrial fibrillation. Southwest J Pulm Crit Care. 2018;16(6):362-7. doi: https://doi.org/10.13175/swjpcc070-18 PDF 

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

Intralobar Bronchopulmonary Sequestration: A Case and Brief Review

Uddalak Majumdar, MD1 

Payal Sen, MD2

Akshay Sood, MD2

1Cleveland Clinic Foundation, Cleveland, OH USA

2Univeristy of New Mexico, Albuquerque, NM USA

 

Abstract

Objective: Bronchopulmonary sequestration is a rare congenital abnormality of the lower respiratory tract, seen mostly in children but often in adults. The term implies a mass of lung tissue that has no function and lacks normal communication with the rest of the tracheobronchial tree.

Case: A 40-year-old man presented with acute onset of left flank pain for 4 hours. He was born in Yemen and emigrated to the US in 1998; at that time, he had been tested for tuberculosis which was negative. In this admission, he met systemic inflammatory response (SIRS) criteria and had basilar crackles in the left lower lobe of the lung. CT scan revealed a cavitary lesion with air-fluid level in the left lower lobe airspace. There was systemic arterial blood supply to this region arising off the celiac axis. He was diagnosed with an infected intralobar bronchopulmonary sequestration and underwent video-assisted thoracoscopic wedge resection. On follow up 3 months later, he was doing well.

Discussion: Pulmonary sequestration is a rare congenital anomaly of a mass of lung tissue, which can have cystic changes and is a very important differential diagnosis of cavities in the lung. Confirmation of diagnosis is by visualization of a systemic vessel supplying sequestrated pulmonary, and this is accomplished by contrast-enhanced CT scan, MRI or invasive angiography. 

Conclusion: The delay in diagnosis in our patient was due to falling prey to anchoring and availability biases and chasing the diagnosis of tuberculosis in a patient from Yemen with a lower lobe cavitation.

Case

History of Present Illness: A 40-year-old man with a past medical history of atrial fibrillation presented to the hospital with acute onset of left flank pain for 4 hours, fevers and chills. The pain was sharp and stabbing, pleuritic, non-radiating, and was severe with an intensity of 10/10. He denied extraneous activity or trauma earlier in the day, denied substernal pain, cough, night sweats, weight loss or change in urinary habits. He was born in Yemen and emigrated to the US in 1998; at that time, he was tested for tuberculosis (TB) which was negative. He was known to have a cavitary lesion in left lower lobe since 2005, and had undergone extensive evaluation (imaging, sputum and PPD) which showed no form of tuberculosis. He denied taking prophylactic TB treatment. Annual PPD testing had always been negative.

The patient worked on a ship, which travelled in the Great Lakes on the US-Canada border. He was a current smoker with a 20-pack-year smoking history. He lived at home with his wife and children. There was no history of IV drug use, prior imprisonment or homelessness. He denied being in contact with anyone with TB while in Yemen. He was sexually active with his wife and had no other sexual partners. He denied history of sexually transmitted infections.

Physical Examination:

Vital Signs: Temp – 38.3 degrees Fahrenheit, Pulse- 111/minute, RR- 18/min, BP- 151/66 mm Hg. Spo2- 90 % on Room Air.

Basilar crackles and rhonchi in the left lower lobe of the lung. No cervical or inguinal lymphadenopathy. Rest of the physical exam was normal.

Significant Laboratory Findings:

WBC elevated at 15,500/mm3 with 65 percent Neutrophils.

Lactate - 1.1 mmol/dL

Radiography:

Chest x-ray was done while in the emergency department, which revealed left basilar sub-segmental atelectasis (Figure 1).

Fig.1. Chest x-ray showing left basilar sub-segmental atelectasis without focal consolidation, large pleural effusion or pneumothorax.

Initial CT scan of abdomen and pelvis was done to rule out renal/ureteral stone. It showed a left lower lobe airspace consolidation with bronchiectasis and bronchiolectasis and a cavitary lesion with air-fluid level (Figure 2). 

Figure 2. Representative images from the CT scan in lung windows showing left lower lobe airspace consolidation concerning for an acute on chronic process.

C-reactive protein and erythrocyte sedimentation rate were normal, CRP and ESR- normal; blood cultures revealed no growth; procalcitonin 0.4 ng/mL (normal <0.15); anti-nuclear antibody – negative; Aspergillus antigen – negative; urine Legionella antigen – negative; Streptococcus pneumoniae antigen – positive.

Sputum Gram stain and acid-fast bacilli culture/stain could not be obtained because the patient did not produce any sputum.

Subsequently CT chest with IV contrast was done which showed findings compatible with a pneumonia within a left lower lobe intrapulmonary sequestration. (Figure 3).

Figure 3. Representative images from the thoracic CT chest with IV contrast. The left lower lobe demonstrates a 69 x 83 mm heterogeneous fluid collection with multiple locules of air. There was systemic arterial blood supply to this region arising off the celiac axis (arrows).

The patient was diagnosed with an infected intralobar bronchopulmonary sequestration. He was treated initially with intravenous fluids and piperacillin-tazobactam. He underwent video-assisted thoracoscopic wedge resection of infected bronchopulmonary sequestration in left lower lobe and ligation of the systemic feeding vessels from the celiac artery. Pathologic examination revealed a fibrotic lung with areas of centrilobular emphysema, bronchiolectasis, mucus pooling and microscopic honeycomb changes. Findings also showed an elastic artery, with features most suggestive of intralobar sequestration. His symptoms completely resolved after his operation.

Discussion

Bronchopulmonary sequestration is a rare congenital abnormality of the lower respiratory tract, seen mostly in children but often in adults, like in our patient (1). In 1946, Pryce coined the term "pulmonary sequestration" to describe a disconnected bronchopulmonary mass or cyst with an anomalous arterial supply (2). The term implies a mass of lung tissue that has no function and lacks normal communication with the rest of the tracheobronchial tree. This mass of non-functional lung tissue receives blood supply from the systemic circulation (3). The exact etiology is unknown and is thought to be an embryologic process error in foregut budding (4), although some have indicated a non-congenital acquired process in intralobar sequestration.

Sequestration may be intra- or extralobar based on its relation with the normal lung lobes. An intralobar sequestration (ILS), like the name suggests, is located within a normal lobe, lacks its own visceral pleura (5) and also has aberrant connections to bronchi, and lung parenchyma, or even the gastrointestinal tract, and often presents with recurrent infections (6,7). Compared to ILS, an extralobar sequestration (ELS) is located outside the normal lung and has its own visceral pleura (8), with the rare occurrence of infectious complications (9). About 75% of BPS is intralobar while 25% is extralobar (10). Bronchopulmonary sequestration is often associated with other congenital abnormalities like congenital diaphragmatic hernia, vertebral anomalies, congenital heart disease, pulmonary hypoplasia, colonic duplication, and congenital pulmonary airway malformation (11). 

Clinically, pulmonary sequestration is latent until infection leads to symptoms (12). Symptoms, like that of any pathological lung condition depend on the type, size, and location of the lesion. Sepsis and extracardiac shunting are common complications of untreated sequestration. Hemoptysis can also be a presentation. The mechanism of pneumonia is post-obstructive and usually recurrence of pneumonia leads to diagnosis. Recurrent pneumonia especially in the lower lobes should always include intralobar sequestration in the differential diagnoses. But the pathophysiology of infection and/or hemoptysis when ILS is not connected to airway is a mystery. Sometimes there is a partial or anatomically abnormal connection to the tracheobronchial tree, which can lead to poor mucus clearance, plugging and recurrent infection.

The mainstay of diagnosis is pre-operative imaging and post-operative histopathology of the resected specimen. The pathognomonic imaging characteristic is systemic vascular supply of the affected area of the lung (intra or extra-lobar), which is seen in about 80% of CT scans. Recurrent infection can lead to cystic areas within the mass (clusters of “ring shadows” on X-ray) (13). The surrounding normal lung may have air trapping and show emphysematous changes. Radiologic signs of BPS are a spectrum and represent the chronic and recurrent inflammation of the sequestrated lung: recurrent focal airspace disease, a parenchymal mass, a cavitary consolidation or mass, cystic lesions, localized bronchiectasis or adjacent emphysema. Bronchoscopy has little role in the management of BPS, which needs to be kept in mind by clinicians investigating cystic lung lesions. Identifying the systemic feeding vessel also helps with surgical planning.  

Symptomatic patients are treated with surgical excision; surgery is curative and is associated with minimal morbidity (14). Surgery is urgent in patients with significant respiratory distress but may be an elective procedure in adults or older children with less symptoms (15, 16). 

For asymptomatic patients of any age, management depends on how ‘high risk’ they are considered for developing complications. High risk patients are those with large lesions occupying >20 percent of the hemithorax, bilateral or multifocal cysts, or those with pneumothorax. In these patients, surgical resection is preferred to observation (17). On the other hand, in asymptomatic patients without these high-risk characteristics, either elective surgical resection or conservative management with observation are reasonable options (18). 

Apart from surgery, even embolization of the anomalous arterial supply has been reported to result in a complete resolution of symptoms and imaging changes to a certain in some cases (19). Since identification of vascular supply during surgery may be difficult during surgery, presurgical embolization may reduce risk of vascular complications (19). Embolization also has a more important role in hemoptysis and heart failure from shunting.

Conclusions

  • Pulmonary sequestration is a rare congenital anomaly of a mass of lung tissue without a normal connection to the tracheobronchial tree and a systemic vascular supply.
  • Presentation in adults is due to complication of the mass, undiagnosed in childhood. 
  • Sequestrated lung can have cystic changes and is a very important differential diagnosis of the cavitation. 
  • Confirmation of diagnosis is by visualization of a systemic vessel supplying sequestrated pulmonary, and this is usually accomplished by contrast-enhanced CT scan, MRI or invasive angiography.

Teaching points

This is a case of adult presentation of congenital pulmonary malformation and represents a delay in diagnosis, even though the patient’s symptoms started 10 years ago. The delay was due to falling prey to anchoring and availability biases and chasing the diagnosis of TB ten years ago in a patient from Yemen with a lower lobe cavitation. 

The feeding vessel from the celiac axis can only be demonstrated via a contrast enhanced CT, and thus, when in doubt, we should always get angiography by contrast-enhanced-CT or MRI or by invasive angiography. Had it been thought of and done 10 years ago, the patient would’ve been diagnosed and treated earlier.

Disclosure Statement

Drs. Majumdar, Sen and Sood have no conflicts of interest or financial ties to disclose.

References

  1. Landing BH, Dixon LG. Congenital malformations and genetic disorders of the respiratory tract (larynx, trachea, bronchi, and lungs). Am Rev Respir Dis. 1979 Jul;120(1):151-85. [CrossRef] [PubMed]
  2. John PR, Beasley SW, Mayne V. Pulmonary sequestration and related congenital disorders. A clinico-radiological review of 41 cases. Pediatric radiology. Pediatr Radiol. 1989;20(1-2):4-9. [CrossRef] [PubMed]
  3. Van Raemdonck D, De Boeck K, Devlieger H, et al. Pulmonary sequestration: a comparison between pediatric and adult patients. Eur J Cardiothorac Surg. 2001 Apr;19(4):388-95. [CrossRef] [PubMed]
  4. Gezer S, Taştepe I, Sirmali M, Findik G, Türüt H, Kaya S, Karaoğlanoğlu N, Cetin G. Pulmonary sequestration: a single-institutional series composed of 27 cases. J Thorac Cardiovasc Surg. 2007 Apr;133(4):955-9. [CrossRef] [PubMed]
  5. Shanti CM, Klein MD. Cystic lung disease. Semin Pediatr Surg. 2008 Feb;17(1):2-8. [CrossRef] [PubMed]
  6. Stocker JT, Drake RM, Madewell JE. Cystic and congenital lung disease in the newborn. Perspect Pediatr Pathol. 1978;4:93-154. [PubMed]
  7. Schwartz MZ, Ramachandran P. Congenital malformations of the lung and mediastinum--a quarter century of experience from a single institution. J Pediatr Surg. 1997 Jan;32(1):44-7. [CrossRef] [PubMed]
  8. Abbey P, Das CJ, Pangtey GS, Seith A, Dutta R, Kumar A. Imaging in bronchopulmonary sequestration. Send to J Med Imaging Radiat Oncol. 2009 Feb;53(1):22-31. [CrossRef] [PubMed]
  9. Houda el M, Ahmed Z, Amine K, Amina BS, Raja F, Chiraz H. Antenatal diagnosis of extralobar pulmonary sequestration. Pan Afr Med J. 2014;19:54. [CrossRef] [PubMed]
  10. Frazier AA, Rosado de Christenson ML, Stocker JT, Templeton PA. Intralobar sequestration: radiologic-pathologic correlation. Radiographics. 1997 May-Jun;17(3):725-45. [CrossRef] [PubMed]
  11. Kravitz RM. Congenital malformations of the lung. Pediatr Clin North Am. 1994 Jun;41(3):453-72. [CrossRef] [PubMed]
  12. Hang JD, Guo QY, Chen CX, Chen LY. Imaging approach to the diagnosis of pulmonary sequestration. Acta Radiol. 1996 Nov;37(6):883-8. [CrossRef] [PubMed]
  13. Hernanz-Schulman M. Cysts and cystlike lesions of the lung. Radiol Clin North Am. 1993 May;31(3):631-49. [PubMed]
  14. Samuel M, Burge DM. Management of antenatally diagnosed pulmonary sequestration associated with congenital cystic adenomatoid malformation. Thorax. 1999 Aug;54(8):701-6. [CrossRef] [PubMed]
  15. Haller JA, Jr., Golladay ES, Pickard LR, Tepas JJ, 3rd, Shorter NA, Shermeta DW. Surgical management of lung bud anomalies: lobar emphysema, bronchogenic cyst, cystic adenomatoid malformation, and intralobar pulmonary sequestration. Ann Thorac Surg. 1979 Jul;28(1):33-43. [CrossRef] [PubMed]
  16. Al-Bassam A, Al-Rabeeah A, Al-Nassar S, Al-Mobaireek K, Al-Rawaf A, Banjer H, et al. Congenital cystic disease of the lung in infants and children (experience with 57 cases). Eur J Pediatr Surg. 1999 Dec;9(6):364-8. [CrossRef] [PubMed]
  17. Parikh DH, Rasiah SV. Congenital lung lesions: Postnatal management and outcome. Semin Pediatr Surg. 2015 Aug;24(4):160-7. [CrossRef] [PubMed]
  18. Singh R, Davenport M. The argument for operative approach to asymptomatic lung lesions. Semin Pediatr Surg. 2015 Aug;24(4):187-95. [CrossRef] [PubMed]
  19. Eber E. Adult outcome of congenital lower respiratory tract malformations. Swiss Med Wkly. 2006 Apr 15;136(15-16):233-40. [PubMed]

Cite as: Majumdar U, Sen P, Sood A. Intralobar bronchopulmonary sequestration: A case and brief review. Southwest J Pulm Crit Care. 2018;16(6):343-9. doi: https://doi.org/10.13175/swjpcc075-18 PDF

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

Sharpening Occam’s Razor – A Diagnostic Dilemma

Payal Sen, MD1

Uddalak Majumdar, MD2

Patrick Rendon, MD1

Ali Imran Saeed, MD1

Akshay Sood, MD1

 

1University of New Mexico

Albuquerque, NM US

2Cleveland Clinic Foundation

Cleveland, OH USA

 

Abstract

Objective: Physicians often search for Occam’s Razor, that is, to have a single diagnosis explain all clinical manifestations in an individual patient. Herein, we describe a case which was significant for a dual clinical diagnosis, thus proving that Occam’s razor may not always hold true. 

Case Summary: A 22-year-old Caucasian man presented with 4 days history of fever, and dry cough. Chest x-ray revealed a right middle lobe pneumonia. Mycoplasma IgM antibody titer was significantly elevated (>1:320), using the rapid diagnosis enzyme-immunoassay (EIA) test, and clinical course was complicated by rhabdomyolysis. He was treated with oral azithromycin for 5 days. The patient however returned to the ER in 2 weeks with similar symptoms and repeat chest x-ray revealed a persistent right middle lobe infiltrate. Endobronchial biopsy revealed necrotizing granulomatous inflammation which stained positive for Histoplasma capsulatum. Serum complement fixation antibody test for Histoplasma demonstrated an elevated titer of 1:64. The patient was diagnosed to have an ‘atypical pneumonia due to sub-acute Histoplasma capsulatum and acute Mycoplasma Pneumoniae infections, complicated by rhabdomyolysis.’

Discussion: This case is unusual because the patient had an acute community-acquired atypical pneumonia from Mycoplasma pneumoniae, complicated by rhabdomyolysis, and also had subacute Histoplasma pneumonia. Physicians often search for Occam’s Razor. However, following Hickam’s dictum, we made the unusual diagnosis of concomitant lung infection in an immunocompetent host with Mycoplasma pneumoniae and Histoplasma capsulatum

Conclusion: This was an immunocompetent patient who ran a complex, protracted, and unusual course of community acquired pneumonia. Often, the pursuit of additional or alternative diagnoses may require repeated and multiple invasive diagnostic sampling. Occam’s razor may not always hold true.

Introduction

Occam's razor proposes that the simplest explanation is usually the correct one. However, in the science of medicine, simple solutions may be elusive. Often there is an incredibly complex constellation of symptoms co-occurring with one another, thereby confounding the scientific community. We described the diagnostic conundrums in managing our patient who ran a complex protracted course of community acquired pneumonia.

Case

A 22-year-old Caucasian male college student with no significant past medical history, initially presented to the University hospital in New Mexico, United States, with 4 days’ history of fever, dry cough, and dyspnea. He had recently returned from a family vacation in Illinois and had spent several weeks fishing on the Mississippi river. Review of systems was negative for chest pain, headache, fever, chills, or night sweats. He denied any sick contacts. He did not smoke and did not use recreational drugs. His grandfather, who had been a heavy cigar smoker, had died of lung cancer.

His vital signs were significant for a body temperature of 100.6° Fahrenheit, respiratory rate of 32 breaths per minute, pulse rate of 94 bpm, blood pressure of 130/82 millimeters of mercury, and pulse oximetry of 90 percent on room air. Physical examination demonstrated that he was in mild respiratory distress. Chest auscultation revealed decreased breath sounds over the right mid to lower lung field. The rest of his physical examination was otherwise unremarkable. 

His laboratory tests revealed a normal complete blood count with a hematocrit of 40.5%, white blood cell count of 8,200 cells per microliter, and platelet count of 263,000 per microliter.  His electrolyte levels showed a serum sodium of 136 mEq per liter, potassium of 3.4 mEq per liter, chloride of 100 mEq per liter, bicarbonate of 21 mEq per liter, blood urea nitrogen of 15 mg/dL and creatinine of 0.9 mg/dL. His blood glucose was normal at 98 mg/dL. His urine analysis revealed 3+ blood without red blood cells. His liver function tests demonstrated an elevated aspartate aminotransferase at 244 units per liter, elevated alanine aminotransferase at 72 units per liter, with normal total bilirubin, albumin, and alkaline phosphatase levels. His serum creatinine kinase (CK) was highly elevated at 26,000 units per liter (normal reference range 39-308 units per liter). His arterial blood gas at rest on room air at an elevation of 5500 feet above sea level showed acute respiratory alkalosis with a normal alveolar arterial gradient with a pH of 7.57, PaCO2 of 28 mmHg, PaO2 of 77 mmHg, and bicarbonate of 22 mEq per liter.  His mycoplasma IgM antibody titer was significantly elevated (> 1:320) using the rapid diagnosis enzyme-immunoassay (EIA) test. Anti-mycoplasma pneumoniae IgA was also elevated. The urinary legionella and pneumococcal antigen levels, sputum culture, blood cultures, and urine toxicology screen were negative. Chest radiograph revealed a right middle and lower lobe pneumonia (Figure 1). 

Figure 1. CXR revealed right mid and lower lobe pneumonia.

The patient was diagnosed with sepsis secondary to Mycoplasma pneumoniae infection of the lungs, with the added complication of rhabdomyolysis. He was treated with intravenous followed by oral azithromycin 500 mg daily for 5 days and given intense hydration therapy. Within 48 hours, his low-grade fever subsided, CK decreased to 1000 units per liter, and the patient felt better. He was then discharged on Day 3 of hospitalization.

The patient however returned to the emergency department 2 weeks after discharge with persistent cough, chest discomfort, and loss of wellbeing. Repeat chest radiograph revealed a persistent right lower lobe infiltrate. Computed tomography (CT) scan of the chest revealed a right lower lobe consolidation with surrounding nodular opacities with a possible endobronchial lesion in the right lower lobe (Figure 2).

Figure 2. Panel A: Coronal view of thoracic CT scan showing right lateral basilar segment consolidation. Panel B: Axial view showing consolidation in the right lower lobe with surrounding nodular opacities.

He underwent bronchoscopy which revealed a mass-like endobronchial lesion in the lateral basilar segmental bronchus of the right lower lobe (Figure 3).

Figure 3. Bronchoscopy revealing a mass-like endobronchial lesion in a lateral segmental bronchus of the right lower lobe.

Endobronchial biopsy revealed necrotizing granulomatous inflammation and stained positive for the yeast form of Histoplasma capsulatum.  Serum complement fixation antibody test for Histoplasma demonstrated an elevated titer of 1:64. Acid fast bacilli were not seen on smear or culture and cytology and histopathology tests did not reveal malignancy.

The patient was diagnosed with an atypical pneumonia due to sub-acute Histoplasma capsulatum and acute Mycoplasma Pneumoniae infections, complicated by rhabdomyolysis. The mycoplasma infection and rhabdomyolysis had already been treated and resolved. For the subacute pulmonary histoplasmosis, the patient was treated with 10 weeks of oral itraconazole. Post treatment clinic follow-up revealed resolution of symptoms and radiological abnormalities.

Discussion

Mycoplasma pneumoniae is a common causative pathogen for community-acquired pneumonia in both children and adults (1).  Apart from respiratory tract symptoms, it is associated with a variety of extra-pulmonary manifestations (2). Recognizing this association can lead to timely diagnosis and treatment of both the mycoplasma infection and its complications. In this case report, we also want to highlight the fact that infection with endemic mycoses can often be mistaken for community acquired pneumonias, and thus having a high index of suspicion for fungal infection is very important, even in immunocompetent patients (3), to prevent a delay in treatment. Physicians often search for Occam’s Razor, i.e., to have a single diagnosis explain all clinical manifestations in an individual patient. This case is significant because of a dual clinical diagnosis, thus proving that Occam’s razor may not always hold true in an individual patient.

Mycoplasma infection can cause several unusual extra-pulmonary manifestations such as hemolytic anemia, immune thrombocytopenic purpura, transverse myelitis, Guillain-Barre syndrome, acute hepatitis and arthritis (4). Another lesser known complication of mycoplasma infection is rhabdomyolysis (5). Rhabdomyolysis is a syndrome caused by injury to the skeletal muscles, thereby resulting in leakage of myoglobin into blood (6). The classic triad of mycoplasma infection consists of myalgias, pigmenturia, and generalized muscle weakness, but this classic triad is seen in less than 10 percent of infected patients (7). Acute renal failure due to acute tubular necrosis as a result of mechanical obstruction by myoglobin is the most common complication, in particular if the serum CK level is >16,000 IU/l, which may be as high as 100,000 IU/l (8). In addition to mycoplasma infection, more common causes of rhabdomyolysis are trauma, immobilization, and recreational drug and alcohol use (9). 

Other organisms known to cause rhabdomyolysis are Influenza A and B virus, Coxsackie virus, Epstein-Barr virus, Primary Human Immunodeficiency virus, Legionella species, Staphylococcus aureus, and Streptococcus pyogenes (9). With respect to Mycoplasma pneumoniae infection, a possible mechanism for rhabdomyolysis is the induction of inflammatory cytokines, such as tumor necrosis factor-alfa (TNF-α) and interleukin-1 (IL-1), which may cause proteolysis of skeletal muscles (10). 

The rapid and reliable diagnosis of Mycoplasma pneumoniae (Mp) enables the correct and prompt use of antibiotics. Methods for identifying Mp infection include culture, molecular detection of pathogen specific antigen or nucleic acid, and serological analysis (11). Each of these methods has its pros and cons. Culture is the definitive method for diagnosis and is critical for monitoring trends in epidemiology but is slow and requires specialized media and trained personnel (11). Although molecular methods for nucleic acid or antigen detection have emerged as the primary techniques for identification of MP pneumoniae in surveillance programs, adoption of these methods is still lagging behind in USA.

Serologic analysis can prove to be problematic due to poor sensitivity and specificity, and the inability to characterize the specific Mp strain. Having said that, most physicians in the United States continue to rely on serological testing in concordance with the IDSA guidelines (11). It is well known that a single serologic test is of limited value in the early diagnosis of mycoplasma pneumoniae since there are often no IgM antibodies in the early stage of infection, and these IgM antibodies may persist long after the infection (12). However, if these IgM antibodies are present along with anti-Mycoplasma pneumoniae IgA, it is usually indicative of recent primary mycoplasma pneumoniae infection (13). A single high Mp-specific antibody titer (> 1:320) has been regarded as a diagnostic marker of mycoplasma pneumoniae, although it is present in only about 30 percent of the patients (12). Since our hospital relies on serological testing, we tested for the specific Mycoplasma pneumoniae IgM and IgA, both of which were positive. The MP-specific antibody titer was also greater than 1:320, thus signifying it indeed was early MP infection.

Symptoms of Mp infection generally resolve within 3–4 weeks after disease onset but can be shortened with antibiotic therapy; macrolides and doxycycline are the mainstay of this treatment (14). The mainstay for the prevention of pigment-induced acute kidney injury is the correction of volume depletion, prevention of intratubular cast formation, and the treatment of the underlying cause of rhabdomyolysis (4). This is done by aggressive fluid resuscitation resulting in increased renal blood flow and thus increasing the urinary flow with consequential wash out of partially obstructing tubular casts (4). Physicians will be served well to watch out for mycoplasma associated rhabdomyolysis in patients with atypical pneumonia and manifestations like myalgia, elevated aminotransferase levels, and myoglobinuria. 

Moving on to the second teaching point, endemic mycoses like coccidioidomycosis, histoplasmosis, and blastomycosis are often overlooked causes for community acquired pneumonia, particularly when immunocompetent patients travel out of the endemic zones (15). Often, testing is not even performed until the patient has failed to improve on antibacterial therapy. Delays in recognition, diagnosis and proper treatment may lead to disastrous outcomes (3). Performance of fungal antigen testing on bronchial washings or lavage fluid may improve the sensitivity for diagnosis over microscopic examination and the speed of diagnosis over culture even though isolation of the fungus by culture remains the gold standard method for definitive diagnosis (16). In this case, our patient was previously treated as mycoplasma pneumonia, thus leading to prolonged symptom course from histoplasmosis.

This case is unusual because the patient had an acute community-acquired atypical pneumonia from Mycoplasma pneumoniae, complicated by rhabdomyolysis, and also had subacute Histoplasma pneumonia. Physicians often search for Occam’s Razor, a principle from philosophy that when presented with competing hypothetical answers to a problem, one should select the one that makes the fewest assumptions.  Countering

Occam’s Razor, Dr. John Hickam said “Patients can have as many diseases as they damn well please!” (17). Following Hickam’s dictum, we made the unusual diagnosis of concomitant lung infection in an immunocompetent host with Mycoplasma pneumoniae and Histoplasma capsulatum.

Conclusion

With this case report, the authors wish to highlight two important teaching points. The first being that rhabdomyolysis is a serious but treatable extrapulmonary complication of Mycoplasma pneumoniae infection of the lungs. Having a high index of suspicion can limit treatment delay for rhabdomyolysis caused by mycoplasma infection and will therefore limit consequential morbidity like renal insufficiency. The second point that the authors wish to emphasize is that endemic fungal infection can often be mistaken for bacterial and viral community-acquired pneumonia in an immunocompetent host, particularly when they present with symptoms outside the endemic zone, thus delaying timely management. Hence one should have a high suspicion for fungal infection in immunocompetent hosts with unusual presentations such as history of travel to endemic zone, chronicity of symptoms, lack of response to therapy for community-acquired pneumonia, nodular lung lesions, and endobronchial abnormalities.

References

  1. Hardy RD, Jafri HS, Olsen K, Hatfield J, Iglehart J, Rogers BB, Patel P, et al. Mycoplasma pneumoniae induces chronic respiratory infection, airway hyperreactivity, and pulmonary inflammation: a murine model of infection-associated chronic reactive airway disease. Infect Immun. 2002 Feb;70(2):649-54. [CrossRef] [PubMed]
  2. Kawai Y, Miyashita N, Kato T, Okimoto N, Narita M. Extra-pulmonary manifestations associated with Mycoplasma pneumoniae pneumonia in adults. Eur J Intern Med. 2016 Apr;29:e9-e10. [CrossRef] [PubMed]
  3. Hage CA, Knox KS, Wheat LJ. Endemic mycoses: overlooked causes of community acquired pneumonia. Respir Med. 2012 Jun;106(6):769-76. [CrossRef] [PubMed]
  4. Gosselt A, Olijhoek J, Wierema T. Severe asymptomatic rhabdomyolysis complicating a mycoplasma pneumonia. BMJ Case Rep. 2017 Jul 26;2017. pii: bcr-2016-217752. [CrossRef] [PubMed]
  5. Khan FY, Sayed H. Rhabdomyolysis associated with Mycoplasma pneumoniae pneumonia. Hong Kong Med J. 2012 Jun;18(3):247-9. [PubMed]
  6. Zimmerman JL, Shen MC. Rhabdomyolysis. Chest. 2013 Sep;144(3):1058-65. [CrossRef] [PubMed]
  7. Zutt R, van der Kooi AJ, Linthorst GE, Wanders RJ, de Visser M. Rhabdomyolysis: review of the literature. Neuromuscul Disord. 2014 Aug;24(8):651-9. [CrossRef] [PubMed]
  8. Allison SJ. Acute kidney injury: Macrophage extracellular traps in rhabdomyolysis-induced AKI. Nat Rev Nephrol. 2018 Mar;14(3):141. [CrossRef] [PubMed]
  9. Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med. 2009 Jul 2;361(1):62-72. [CrossRef] [PubMed]
  10. Giannoglou GD, Chatzizisis YS, Misirli G. The syndrome of rhabdomyolysis: Pathophysiology and diagnosis. Eur J Intern Med. 2007 Mar;18(2):90-100. [CrossRef] [PubMed]
  11. Diaz MH, Winchell JM. The evolution of advanced molecular diagnostics for the detection and characterization of Mycoplasma pneumoniae. Front Microbiol. 2016 Mar 8;7:232. [CrossRef] [PubMed]
  12. Lee SC, Youn YS, Rhim JW, Kang JH, Lee KY. Early serologic diagnosis of Mycoplasma pneumoniae pneumonia: An observational study on changes in titers of specific-igm antibodies and cold agglutinins. Medicine. 2016 May;95(19):e3605. [CrossRef] [PubMed]
  13. Lee WJ, Huang EY, Tsai CM, Kuo KC, Huang YC, Hsieh KS, et al. Role of serum Mycoplasma pneumoniae IgA, IgM, and IgG in the diagnosis of mycoplasma pneumoniae-related pneumonia in school-age children and adolescents. Clin Vaccine Immunol. 2017 Jan 5;24(1). pii: e00471-16. [CrossRef] [PubMed]
  14. Novacco M, Sugiarto S, Willi B, Baumann J, Spiri AM, Oestmann A, Riond B, et al. Consecutive antibiotic treatment with doxycycline and marbofloxacin clears bacteremia in Mycoplasma haemofelis-infected cats. Vet Microbiol. 2018 Apr;217:112-120. [CrossRef] [PubMed]
  15. Valdivia L, Nix D, Wright M, Lindberg E, Fagan T, Lieberman D, Stoffer T, et al. Coccidioidomycosis as a common cause of community-acquired pneumonia. Send to Emerg Infect Dis. 2006 Jun;12(6):958-62. [CrossRef] [PubMed]
  16. Wheat LJ. Approach to the diagnosis of the endemic mycoses. Clin Chest Med. 2009 Jun;30(2):379-89. [CrossRef] [PubMed]
  17. Gupta N, Aragaki A, Wikenheiser-Brokamp KA, Benzaquen S, Panos RJ. Occam's razor or Hickam's dictum? J Bronchology Interv Pulmonol. 2012 Jul;19(3):216-9. [CrossRef] [PubMed]

Cite as: Sen P, Majumdar U, Rendon P, Saeed AI, Sood A. Sharpening Occam's razor-a diagnostic dilemma. Southwest J Pulm Crit Care. 2018;16(6):324-31. doi: https://doi.org/10.13175/swjpcc061-18 PDF 

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

June 2018 Pulmonary Case of the Month

Lewis J. Wesselius, MD

Department of Pulmonary Medicine

Mayo Clinic Arizona

Scottsdale, AZ USA

 

History of Present Illness

The patient is a 53-year-old man who presented in January 2018 for a second opinion on interstitial lung disease first diagnosed in 2011. He lives in Los Angeles and had one year of increasing dyspnea on exertion prior to diagnosis. He had an outside surgical lung biopsy and was treated with prednisone, then started on azathioprine and the prednisone tapered. He was followed regularly and had limited progression over next 7 years.  However, recently he had increasing shortness of breath.

Past Medical History, Social History, Family History

He has no significant past medical history. He is a nonsmoker and denies any significant occupational exposures.

Physical Examination

Physical examination was unremarkable without rales or clubbing.

Which of the following should be obtained at this time? (Click on the correct answer to proceed to the second of five pages)

  1. Prior chest x-rays, CT scans, pulmonary function testing and lung biopsy
  2. Repeat CT scan, pulmonary function testing
  3. Rheumatological serologies
  4. 1 and 3
  5. All of the above

Cite as: Wesselius LJ. June 2018 pulmonary case of the month. Southwest J Pulm Crit Care. 2018;16(6):296-303. doi: https://doi.org/10.13175/swjpcc063-18 PDF 

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

April 2018 Pulmonary Case of the Month

Ashely L. Garrett, MD

Mayo Clinic Arizona

Scottsdale, AZ USA

  

History of Present Illness

A 74-year-old woman with known chronic obstructive pulmonary disease (COPD) presented to emergency department on 2/4/18 with dyspnea. She had been hospitalized at another hospital from 12/29/17 - 1/30/18 for a COPD exacerbation and health care associated pneumonia described as a cavitary pneumonia. She was treated with various doses of systemic steroids and antibiotics. Her course was complicated by atrial fibrillation with a rapid ventricular response. She eventually was discharged to a skilled nursing facility.

Past Medical History, Social History and Family History

She has a known history of COPD with an FEV1 of 22% of predicted and is on 2L/min of O2 by nasal cannula. There is also a history of:

  • Hypertension.
  • Hypercholesterolemia.
  • Paroxysmal atrial fibrillation, not on anticoagulation.
  • Right 4 mm PICA aneurysm

She lives in rural Kingman, AZ with some dust and outdoor bird exposure.

Family history is noncontributory.

Medications

  • Alprazolam 0.25 mg p.o. b.i.d.
  • Symbicort two puffs inhaled b.i.d.
  • Diltiazem 120 mg p.o. q.12h
  • Disopyramide 150 mg p.o. q.6h
  • Furosemide 20 mg p.o. daily
  • Levalbuterol 0.31 mg q.6 days p.r.n.
  • Meperidine 50 mg p.r.n. pain
  • Metoprolol succinate 12.5 mg p.o. b.i.d
  • Prednisone 10 mg p.o. daily

Physical Examination

  • Vitals: BP 110/65 mm Hg, P 130 irregular beats/min, T 37° C, Respirations 20 breaths/min
  • General: Appears in mild respiratory distress
  • Lungs: Distant breath sounds
  • Heart: Irregular rhythm with distant tones
  • Abdomen: no organomegaly, masses or tendernesses
  • Extremities:  No edema

Which of the following should be done at this time? (Click on the correct answer to proceed to the second of six pages)

  1. Arterial blood gases (ABGs)
  2. Chest x-ray
  3. Electrocardiogram
  4. 1 and 3
  5. All of the above

Cite as: Garrett AL. April 2018 pulmonary case of the month. Southwest J Pulm Crit Care. 2018;16(4):174-82. doi: https://doi.org/10.13175/swjpcc050-18 PDF

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

March 2018 Pulmonary Case of the Month

Thomas D. Kummet, MD

Sequim, WA USA

 

Pulmonary Case of the Month CME Information

Completion of an evaluation form is required to receive credit and a link is provided on the last panel of the activity. 

0.25 AMA PRA Category 1 Credit(s)™

Estimated time to complete this activity: 0.25 hours

Lead Author(s): Thomas D. Kummet, MD.  All Faculty, CME Planning Committee Members, and the CME Office Reviewers have disclosed that they do not have any relevant financial relationships with commercial interests that would constitute a conflict of interest concerning this CME activity.

Learning Objectives: As a result of completing this activity, participants will be better able to:

  1. Interpret and identify clinical practices supported by the highest quality available evidence.
  2. Establish the optimal evaluation leading to a correct diagnosis for patients with pulmonary, critical care and sleep disorders.
  3. Translate the most current clinical information into the delivery of high quality care for patients.
  4. Integrate new treatment options for patients with pulmonary, critical care and sleep related disorders.

Learning Format: Case-based, interactive online course, including mandatory assessment questions (number of questions varies by case). Please also read the Technical Requirements.

CME Sponsor: University of Arizona College of Medicine at Banner University Medical Center Tucson

Current Approval Period: January 1, 2017-December 31, 2018

Financial Support Received: None

 

History of Present Illness

The patient was a 62-year-old woman who complained of a sudden severe increase in a three-month history of mild left upper extremity pain. 

PMH, SH and FH

The patient had no significant past medical history. She is a non-smoker. Family history is non-contributory.

Physical Examination

  • Vital Signs: Pulse 102 beats/min, blood pressure 140/84 mm Hg, respirations 16 breaths/min, Temperature 37.4º C, SpO2 94% on room air.
  • Lungs: Clear.
  • Heart: Regular rhythm.
  • Abdomen: without organomegaly, masses or tendernesses.
  • Extremities: Both upper extremities were unremarkable. The left shoulder had a full range of motion. Pulses were intact bilaterally and equal.
  • Neurologic: Upper extremity strength was good and equal. Light touch and pin prick were intact. Deep tendon reflexes were well preserved.

Which of the following are indicated in management at this time? (Click on the correct answer to proceed to the second of seven pages)

  1. Reassurance that the pain will improve
  2. Shoulder x-ray
  3. Treatment with oxycodone
  4. 1 and 3
  5. All of the above

Cite as: Kummet TD. March 2018 pulmonary case of the month. Southwest J Pulm Crit Care. 2018;16(3):110-6. doi: https://doi.org/10.13175/swjpcc033-18 PDF

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

October 2017 Pulmonary Case of the Month

Eric A. Jensen, MD

Department of Radiology

Mayo Clinic Arizona

Scottsdale, AZ USA

  

History of Present Illness

A 56-year-old woman presented with 3 days of non-productive cough, low-grade fever and severe right-sided pleuritic chest pain.

Past Medical History, Social History and Family History

She was diagnosed with coccidioidomycosis 5 years previously. She reports that she has had pneumonia every 6 to 12 months since her diagnosis with valley fever. She does not smoke. Family history is noncontributory.

Physical Examination

Her vital signs were unremarkable and she was afebrile but did cough frequently during the examination. Her lungs were clear and the rest of the physical examination was unremarkable.

Chest Radiography

She brings in two prior chest x-rays, one from 2011 (Figure 1, Panels A & B) and another from 2012 (Figure 1, Panel C).

Figure 1. Chest radiograph from 2011 (A & B) and from 2012 (C).

Which of the following best describes the chest x-rays? (Click on the correct answer to proceed to the second of five pages)

  1. A repeat chest x-ray should be performed
  2. A right lower lobe mass is present which appears to have enlarged from 2011 to 2012
  3. There is a right lower posterior lung density
  4. 1 and 3
  5. All of the above

Cite as: Jensen EA. October 2017 pulmonary case of the month. Southwest J Pulm Crit Care. 2017;15(4):125-30. doi: https://doi.org/10.13175/swjpcc115-17 PDF

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

Tip of the Iceberg: 18F-FDG PET/CT Diagnoses Extensively Disseminated Coccidioidomycosis with Cutaneous Lesions

Benjamin B. Nia1

Emily S. Nia2

Ngozi Osondu3

John N. Galgiani3,4

Phillip H. Kuo2,5

 

1College of Medicine, University of Texas Medical Branch, Galveston, TX, USA.

 

2Department of Medical Imaging

3Department of Medicine, Section of Infectious Disease

4Valley Fever Center for Excellence

5Departments of Medicine and Biomedical Engineering

University of Arizona

Tucson, AZ, USA.

 

Abstract

We present a case of an immunocompetent 27-year-old African American man who was initially diagnosed with diffuse pulmonary coccidioidomycosis and started on oral fluconazole. While his symptoms improved, he began to develop tender cutaneous lesions. Biopsies of the cutaneous lesions grew Coccidioides immitis. Subsequent 18F-FDG PET/CT revealed extensive multisystem involvement including the skin/subcutaneous fat, lungs, spleen, lymph nodes, and skeleton. This case demonstrates the utility of obtaining an 18F-FDG PET/CT to assess the disease extent and activity in patients with disseminated coccidioidomycosis who initially present with symptoms involving only the lungs.

Report of Case

A 27-year-old African American man, who lived in the desert southwest of the United States for several years, with no significant past medical history presented with chest pain, weight loss, and shortness of breath. After two urgent care visits, he was admitted to the hospital with a chest radiograph showing bilateral pulmonary infiltrates (Figure 1).

Figure 1. Frontal (A) and lateral (B) chest radiography at hospital admission shows extensive reticulonodular opacities suspicious for atypical infection.

Bronchoscopy yielded Coccidioides spp., and immunodiffusion complement fixation (IDCF) was further confirmatory. Laboratory values showed elevated erythrocyte sedimentation rate (ESR) and mildly abnormal liver function tests. He was diagnosed with diffuse pulmonary coccidioidomycosis and discharged home on 400 mg of oral fluconazole per day. At initial follow-up appointment, he reported feeling significantly better with resolution of his chest pain. He was gaining weight and had increased physical activities. At three-month follow-up, he reported continued improvement but complained of three new “spots” on the skin of his lower abdomen (Figure 2).

Figure 2. Photograph of the cutaneous lesions at nine months (red arrows) that were also present at 3- and 6-month follow-up appointments.

On physical exam, the cutaneous lesions were not suspicious for disseminated infection so treatment was continued unchanged. At six-month follow-up, he displayed numerous cutaneous lesions that were now tender. A biopsy of a cutaneous lesion demonstrated Coccidioides spherules on microscopy. An 18F-FDG PET/CT scan was performed to assess the extent of disease and demonstrated FDG-avid disease involving the skin/subcutaneous tissue, lungs, spleen, multi-station lymph nodes, and the skeleton (Figure 3).

Figure 3. Coronal maximum-intensity projection (A) and axial fused (B) 18F-FDG PET/CT scan shows FDG-avid disease involving the spleen (blue arrow), osseous structures (green arrows), multiple lymph nodes stations (yellow arrows), and soft tissues, including the skin and subcutaneous tissues (red arrows).

After another month, the skin lesions improved and, on further questioning, the patient revealed that he had previously not been taking his fluconazole as prescribed. Because of the skeletal involvement uncovered by the PET/CT scan, the patient’s oral fluconazole dose was increased to 800 mg per day. At nine-month follow-up, patient reported continued improvement and resolution of majority of skin lesions, albeit with residual hyperpigmentation.  

Discussion

Coccidioidomycosis, or “Valley fever” is a fungal infection caused by inhalation of Coccidioides immitis or Coccidioides posadasii spores. Most infections cause little clinically apparent illness and result in lifelong immunity. Approximately one-third of infections produce pulmonary syndromes compatible with a community-acquired pneumonia, whereas <1% are complicated by potentially fatal blood-stream dissemination. Skin involvement is one of the most common manifestations of disseminated coccidioidomycosis. Other common sites of involvement include the bones, joints, and meninges. Unfortunately, nonspecific symptoms, the subacute nature of this disease, and lack of familiarity with this infection result in delayed diagnosis, increasing the risk of dissemination. Risk factors for disseminated coccidioidomycosis include African-American or Filipino ancestry, immunocompromised state, pregnancy, and discrete genetic defects. Coccidioides-endemic areas include parts of the southwestern United States, Central and South America (1,2).

18F-FDG PET/CT is an imaging modality most commonly utilized to stage malignancies and monitor response to therapy. 18F-FDG is a radioactive analog of glucose and is taken up by inflammatory cells. Detecting and monitoring infectious and inflammatory processes can be achieved with various imaging techniques, including computed tomography, magnetic resonance imaging, and ultrasonography. However, these techniques rely primarily on structural changes, and differentiation between active and indolent infections can be difficult. PET/CT’s whole-body coverage and high sensitivity can localize all sites of disease and assess level of disease activity (3,4).

This case demonstrates the utilization of 18F-FDG PET/CT to provide a comprehensive assessment of disease extent and activity in a patient with disseminated coccidioidomycosis. Diagnosing extent of disease is particularly important in this circumstance as osseous coccidioidomycosis predominantly results in osteolytic lesions that increase risk for fractures. Additionally, soft tissue assessment may reveal clinically occult soft tissue abscesses that may require surgical debridement (5). For this patient, the PET/CT scan results provided information that prompted medication dose escalation and emphasized the need for medication compliance. If disseminated coccidioidomycosis is suspected, PET/CT may provide value for the diagnostic evaluation in selected patients.

References

  1. Odio CD, Marciano BE, Galgiani JN, Holland SM.Risk factors for disseminated coccidioidomycosis, United States. Emerg Infect Dis. 2017 Feb;23(2). [CrossRef] [PubMed]
  2. Nguyen C, Barker BM, Hoover S, Nix DE, Ampel NM, Frelinger JA, Orbach MJ, Galgiani JN. Recent advances in our understanding of the environmental, epidemiological, immunological, and clinical dimensions of coccidioidomycosis. Clin Microbiol Rev. 2013;26(3):505-25. [CrossRef] [PubMed]
  3. Zhuang H, Alavi A. 18-Fluorodeoxyglucose Positron Emission Tomographic Imaging in the Detection and Monitory of Infection and Inflammation. Semin Nucl Med. 2002;32:47-9. [CrossRef] [PubMed]
  4. Basu S, Chryssikos T, Moghadam-Kia S, Zhuang H, Torigian DA, Alavi A. Positron emission tomography as a diagnostic tool in infection: present role and future possibilities. Semin Nucl Med. 2009;39:36–51. [CrossRef] [PubMed]
  5. Gupta NA, Iv M, Pandit RP, Patel MR. Imaging manifestations of primary and disseminated coccidioidomycosis. App Radiol. 2015;44(2):9-21. Available at: http://appliedradiology.com/articles/imaging-manifestations-of-primary-and-disseminated-coccidioidomycosis (accessed 7/10/17).

Cite as: Nia BB, Nia ES, Osondu N, Galgiani JN, Kuo PH. Tip of the iceberg: 18F-FDG PET/CT diagnoses extensively disseminated coccidioidomycosis with cutaneous lesions. Southwest J Pulm Crit Care. 2017;15(1):28-31. doi: https://doi.org/10.13175/swjpcc069-17 PDF 

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

May 2017 Pulmonary Case of the Month

Lewis J. Wesselius, MD

Robert W. Viggiano, MD

 

Department of Pulmonary Medicine

Mayo Clinic Arizona

Scottsdale, AZ USA

   

History of Present Illness

A 69-year-old man with known heart failure, COPD and prostate cancer with presented with increased shortness of breath. He denied any fever, chills, cough or sputum.

Past Medical History, Social History and Family History

  • Diastolic heart failure with a preserved ejection fraction
  • Prostate cancer with bone metastasis treated with leuprolide (Lupron®
  • COPD treated with salmeterol/fluticasone and tiotropium
  • He is married, retired and had quit smoking a number of years ago.
  • Family history was unremarkable

Physical Examination

  • Oxygen saturation (SpO2) was 93% on room air.
  • Physical examination showed jugular venous distention (JVD), bilateral lung rales a laterally displaced pulse of maximal impulse (PMI) and 1+ pretibial edema.

Radiography

A chest x-ray was performed (Figure 1).

Figure 1. Admission chest x-ray.

Based on the history and chest x-ray which of the following is the most likely diagnosis? (Click on the correct answer to proceed to the second of six pages)

  1. Community-acquired pneumonia
  2. Congestive heart failure
  3. COPD exacerbation
  4. Metastatic prostate cancer
  5. Pulmonary embolism

Cite as: Wesselius LJ, Viggiano RW. May 2017 pulmonary case of the month. Southwest J Pulm Crit Care. 2017;14(5):185-91. doi: https://doi.org/10.13175/swjpcc052-17 PDF

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

April 2017 Pulmonary Case of the Month

Lewis J. Wesselius, MD

Pulmonary Department

Mayo Clinic Arizona

Scottsdale, AZ USA

 

History of Present Illness

A 63-year-old woman with a prior diagnosis of possible rheumatoid arthritis was referred for dyspnea with more vigorous activities in Prescott where she now lives (elevation 5367 ft.). She is receiving hydroxychloroquine 400 mg/day.

Past Medical History, Social History and Family History

She has a past medical history of hypertension. She smoked about a pack per day from age 20 to 40. There is a history of colon cancer in her mother and  lung cancer in a sister.

Physical Examination

  • Vitals: BP 155/102, SpO2 93% on room air
  • Chest: slightly decreased breath sounds but clear
  • Cardiovascular:  regular rhythm without murmur
  • Extremities:  no cyanosis, clubbing or edema
  • The remainder of the physical examination is normal

What testing would you perform at this time? (Click on the correct answer to proceed to the second of five pages)

  1. Chest X-ray
  2. Pulmonary function testing
  3. Rheumatoid factor
  4. 1 and 3
  5. All of the above

Cite as: Wesselius LJ. April 2017 pulmonary case of the month. Southwest J Pulm Crit Care. 2017;14(4):129-33. doi: https://doi.org/10.13175/swjpcc040-17 PDF

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

December 2016 Pulmonary Case of the Month

Lewis J. Wesselius, MD

Department of Pulmonary Medicine

Mayo Clinic Arizona

Scottsdale, AZ

 

Pulmonary Case of the Month CME Information

Members of the Arizona, New Mexico, Colorado and California Thoracic Societies and the Mayo Clinic are able to receive 0.25 AMA PRA Category 1 Credits™ for each case they complete. Completion of an evaluation form is required to receive credit and a link is provided on the last panel of the activity. 

0.25 AMA PRA Category 1 Credit(s)™

Estimated time to complete this activity: 0.25 hours

Lead Author(s): Lewis J. Wesselius, MD.  All Faculty, CME Planning Committee Members, and the CME Office Reviewers have disclosed that they do not have any relevant financial relationships with commercial interests that would constitute a conflict of interest concerning this CME activity.

Learning Objectives:
As a result of this activity I will be better able to:

  1. Correctly interpret and identify clinical practices supported by the highest quality available evidence.
  2. Will be better able to establsh the optimal evaluation leading to a correct diagnosis for patients with pulmonary, critical care and sleep disorders.
  3. Will improve the translation of the most current clinical information into the delivery of high quality care for patients.
  4. Will integrate new treatment options in discussing available treatment alternatives for patients with pulmonary, critical care and sleep related disorders.

Learning Format: Case-based, interactive online course, including mandatory assessment questions (number of questions varies by case). Please also read the Technical Requirements.

CME Sponsor: University of Arizona College of Medicine at Banner University Medical Center Tucson

Current Approval Period: January 1, 2015-December 31, 2016

Financial Support Received: None

 

History of Present Illness

The patient is a 29-year-old man who presented to the emergency room with right-sided pleuritic chest pain, fever, cough, and progressive dyspnea over 2 weeks.

Past Medical History, Social History and Family History

He had no prior significant medical issues and had been well until 2 weeks ago. A native of India, he has been in the US for about 5 months and works at American Express. He is a nonsmoker. Family history is noncontributory.

Physical Examination

  • Vitals signs: Temperature 38.0 C, Blood Pressure 155/85 mm Hg, Heart Rate 140 beats/min, Respirations 24 breaths/min
  • General: Appears to be in moderate pain and respiratory distress
  • Lungs: Decreased breath sounds on the right
  • Heart: regular rhythm with a tachycardia
  • Abdomen: unremarkable
  • Extremities: unremarkable
  • Neurologic: unremarkable

Radiography

His initial chest x-ray is shown in Figure 1.

Figure 1. Initial chest radiograph.

Which of the following best describes the chest x-ray? (Click on the correct answer to proceed to the second of seven pages)

  1. Elevated right hemidiaphragm
  2. Large right pleural effusion
  3. Right lower lobe and middle lobe consolidation
  4. Right lung atelectasis
  5. None of the above

Cite as: Wesselius LJ. December 2016 pulmonary case of the month. Southwest J Pulm Crit Care. 2016;13(6):268-75. doi: https://doi.org/10.13175/swjpcc122-16 PDF

Read More