Sleep
The Southwest Journal of Pulmonary and Critical Care and Sleep publishes articles related to those who treat sleep disorders in sleep medicine from a variety of primary backgrounds, including pulmonology, neurology, psychiatry, psychology, otolaryngology, and dentistry. Manuscripts may be either basic or clinical original investigations or review articles. Potential authors of review articles are encouraged to contact the editors before submission, however, unsolicited review articles will be considered.
Out of Center Sleep Testing in Ostensibly Healthy Middle Aged to Older Adults
Stuart F. Quan, M.D.1,2
Brandon J. Lockyer1
Salma Batool-Anwar, M.D., M.P.H.1
Daniel Aeschbach, Ph.D.1,3
1Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology; Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, MA
2Asthma and Airways Research Center, University of Arizona College of Medicine, Tucson, AZ
3Department of Sleep and Human Factors Research; Institute of Aerospace Medicine; German Aerospace Center; Cologne, 51147; Germany
Abstract
Background: Out of Center Sleep Testing (OCST) is used increasingly to diagnose obstructive sleep apnea (OSA). However, there are few data using OCST that quantify the amount of intrinsic apneic and hypopneic events among asymptomatic healthy persons, especially those who are elderly. This analysis reports the results of OCST in a small group of ostensibly healthy asymptomatic individuals.
Methods: The study population was comprised of ostensibly healthy middle-aged to elderly volunteers for studies of circadian physiology. Before undergoing an OCST, they were found to be free of any chronic medical or psychiatry condition by history, physical and psychologic examination and by a variety of questionnaires and laboratory tests.
Results: There were 24 subjects ranging in age from 55-70 years who had an OCST performed. Repeat studies were required in only 3 subjects. Over half the study population was over the age of 60 years (54.2% vs 45.8%); the majority were men (70.8%). The mean apnea hypopnea index (AHI) was 9.2 /hour with no difference between younger and older subjects. However, 11 had an AHI > 5 /hour. Five had an AHI >15 /hour and 2 had an AHI >40 /hour. Those with an AHI <15 /hour had a mean AHI of 4.4 /hour (95% CI:2.8-6.0 /hour).
Conclusions: Although OCST has a low failure rate, there is a high prevalence of intrinsic obstructive apnea and hypopnea in ostensibly healthy asymptomatic persons.
Introduction
Out of center sleep testing (OCST) is increasingly used instead of laboratory polysomnography (PSG) for the identification of persons with obstructive sleep apnea (OSA) (1). There have been a number of studies validating the use of OCST for this purpose (1). Consequently, large research studies now are using OCST to identify subjects with OSA for clinical trials or observational studies (2-4). Out of center sleep testing also may have a role in identifying the presence of unrecognized OSA in studies of asymptomatic normal individuals. Studies reporting on the frequency of apneic and hypopneic events in healthy individuals using current PSG monitoring techniques (5, 6) found surprisingly high prevalence rates of OSA. Similar reports using OCST also noted that OSA was common in asymptomatic volunteers, but many of these subjects still had chronic medical conditions (7, 8). Thus, there is little information on the prevalence of OSA using OCST, especially in those who are older without any co-morbidities.
In this report, we describe the results of OCST in a small group of middle-aged to older adults who were screened intensively to exclude the presence of chronic sleep and medical conditions. We hypothesized that in this group of ostensibly healthy adults the prevalence of OSA would be less than previously observed.
Methods
Potential subjects between 55 and 70 years of age were identified through public advertisements for volunteers to participate in a circadian physiology research study. The study was approved by the Partners Health Care Human Research Committee, and subjects gave written informed consent prior to their participation. Initially, 5,225 individuals were screened by telephone for medical and psychiatric exclusion criteria. Those who passed (n=90) were invited for an interview and more intensive screening which included a medical history, the Pittsburgh Sleep Quality Index (PSQI) (9), Epworth Sleepiness Scale (ESS) (10) the Berlin Questionnaire (11), blood and urine tests, an electrocardiogram, and a complete physical examination by a physician. In addition, a structured psychologic examination was conducted by a clinical psychologist along with completion of several psychological screening tests including the Geriatric Depression Scale (12), Mattis Dementia Rating Scale (13) and the Mini Mental Status Examination (14). Potential subjects also could not have worked at night for the previous 3 years or recently traveled across time zones. Those who were determined to be free from any acute or chronic medical or psychiatric condition including but not limited to obesity (body mass index, BMI < 30 kg/m2), medication use, hypertension, cardiovascular or pulmonary disease, neoplasia, and disorders of the gastrointestinal, renal, endocrine, metabolic or neurologic systems were asked to undergo an OCST.
The OCST was performed using the Embletta Gold (Embla Systems, Broomfield, CO), a Type III OCST device. The testing montage included nasal pressure, pulse oximetry, bilateral leg electromyography, and chest and abdominal inductance plethysmography. Subjects were instructed to sleep at their habitual hours during OCST. Procedure for determining lights out and lights on, sleep onset and sleep offset, and wake periods during OCST in the sleep, aging and circadian rhythm disorders is given in Appendix 1. Estimated total sleep time was ascertained by the scoring technologist on the basis of changes in the recorded signals indicative of sleep onset or offset and a questionnaire administered to the subject on the morning after the study (see online supplement for the protocol). Studies were scored for apneas, hypopneas and periodic limb movements according to the following criteria. An apnea was defined as > 90% amplitude decrease from baseline of the nasal pressure signal lasting ≥ 10 s. Hypopneas were scored if an event was at least 10 s in duration and if there was a clear amplitude reduction of the nasal pressure signal that was associated with an oxygen desaturation > 4%. Obstructive or central apneas were identified by the presence or absence of respiratory effort, respectively. The apnea hypopnea index (AHI) was calculated as the sum of all apneas and hypopneas divided by the estimated total sleep time. Periodic limb movements were identified using American Academy of Sleep Medicine criteria (15). The periodic limb movement index (PLMI) was computed as the sum of all periodic limb movements divided by the estimated total sleep time. All OCST recordings were scored by a registered polysomnographic technologist and reviewed by a board-certified sleep physician.
Six subjects who had successfully completed the circadian physiology protocol were invited again to enroll in a related protocol approximately 1-3 years later. They repeated the aforementioned screening procedures including a second OCST.
Paired and unpaired Student’s t-tests were used to compare means. Comparisons between proportions were performed using c2. Data are expressed as means ± SD or number and % of cases. Data were analyzed using IBM SPSS Statistics V24 (Armonk, NY).
Results
As shown in Table 1, there were 24 subjects who successfully underwent a screening OCST.
Their ages ranged from 55 to 70 years. Over half the study population was over the age of 60 years [13/24 (54.2 %) vs 11/24 (45.8%)], and the majority were men (70.8%). In 3 subjects, the initial OCST provided insufficient data and a repeat study was required. The mean AHI was 9.2 /hour overall and there were no differences between younger and older subjects. Notably, 11 subjects (46%) had an AHI greater than 5 /hour. Five (21%) had an AHI greater than 15 /hour and 2 subjects had an AHI greater than 40 /hour. Excluding subjects with an AHI ≥15 /hour yielded a mean AHI of 4.4 (95% CI: 2.8-6.0) /hour. Younger subjects had a higher BMI (27.1 ± 2.7 vs. 24.2 ± 3.5 kg/m2, p=0.036), tended to have a longer estimated total sleep time (9.2 ± 0.6 vs. 7.9 ± 2.1 hours, p=0.059), and a slightly lower average nocturnal oxygen saturation (94.9 ± 1.4 vs. 96.1 ± 1.4%, p=.061). No other differences were observed between young and older subjects.
In Table 2 are shown the sleep and anthropometric findings for the 6 subjects who had repeat testing.
The interval between tests ranged from 382 to 930 days (mean: 672 ± 227 days). Although there was a slight increase in BMI over this interval, no changes were noted in their sleep quality, AHI or PLMI.
Discussion
In this study, we found that it was feasible to screen an ostensibly healthy asymptomatic group of middle to older aged adults for the presence of OSA using a Level III OCST device. The results of the OCST were replicable over an interval of several years and there were few technical failures. Furthermore, evidence of OSA was observed in a substantial proportion of these individuals underscoring that the diagnosis of OSA remains unrecognized in many elderly persons.
Over the past 20 years, there have been numerous clinical trials and cohort studies that have recorded data related to the presence of OSA (2-4, 8, 16, 17). Most have used PSG recorded in the laboratory or at home (16-18). However, the use of PSG is logistically complex and expensive. Additionally, the equipment required for data acquisition may artifactually disrupt the subject’s sleep. In contrast, OCST is less intrusive and expensive, but actual sleep is not recorded. However, to our knowledge there have not been previous studies that have determined the normative values for the AHI using OCST in a group of ostensibly healthy middle-aged to older adults. In this small cohort, the mean AHI was 9.2 /hour. According to the 3rd International Classification of Sleep Disorders (19), an AHI ≥15 /hour is diagnostic of OSA even in the absence of symptoms or associated medical conditions. Therefore, after excluding those who met criteria for at least moderate OSA (i.e., AHI ≥15 hour), our findings indicate an average value of 4.4 /hour in those individuals with a “normal” AHI using OCST. In contrast, a previous study of healthy volunteers for circadian physiology research using similar inclusion and exclusion criteria found the overall mean AHI of all subjects using PSG was substantially higher; hypopneas were identified if reductions in airflow were associated with a minimum 3% oxygen desaturation or a cortical arousal (6). However, a more recent study also using PSG found AHI values more similar to our observations (5). Although it would be expected that OCST may underreport the presence of hypopneas, the explanation for the differences between the two PSG studies is unclear given that the recording montages and respiratory scoring algorithms appeared to be similar.
A striking finding from this study is the high prevalence of OSA among these carefully screened, ostensibly healthy volunteers who had no evidence of a sleep disorder based on their Berlin Questionnaire, PSQI and ESS. The AHI of 2 subjects documented the presence of severe OSA which is usually an indication for treatment. The absence of hypersomnia in a substantial proportion of persons with PSG evidence of OSA has been clearly documented (20). Our data extend these observations by demonstrating the existence of severe OSA in ostensibly healthy middle-aged to older adults. Although some data suggest that such individuals are not at risk for cardiovascular disease or other sequelae of OSA (8), whether this prognosis is correct is still not settled.
Some, but not all epidemiologic data suggest that OSA slowly worsens with age. In contrast, we observed no progression of OSA over an interval of approximately 1-2.5 years (8, 21). However, it is likely that our follow up interval was insufficient to detect a change given the small number of subjects.
In conclusion, use of OCST to screen for OSA is feasible in research studies of normal individuals. Importantly, a relatively high proportion of even ostensibly healthy individuals can be expected to show evidence of OSA.
Acknowledgements
This study was supported by P01 AG009975 from the National Institute of Aging. We would like to express our gratitude to Alec Rader and Jacob Medina for their help with subject recruitment and Stephanie Marvin for scoring support.
References
- Kapur VK, Auckley DH, Chowdhuri S, et al. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2017;13(3):479-504. [CrossRef] [PubMed]
- Gottlieb DJ, Punjabi NM, Mehra R, et al. CPAP versus oxygen in obstructive sleep apnea. N Engl J Med. 2014;370(24):2276-85. [CrossRef] [PubMed]
- Zhao YY, Wang R, Gleason KJ, et al. Effect of Continuous Positive Airway Pressure Treatment on Health-Related Quality of Life and Sleepiness in High Cardiovascular Risk Individuals with Sleep Apnea: Best Apnea Interventions for Research (BestAIR) Trial. Sleep. 2017;40(4):10.1093/sleep/zsx040. [CrossRef] [PubMed]
- Redline S, Sotres-Alvarez D, Loredo J, et al. Sleep-disordered breathing in Hispanic/Latino individuals of diverse backgrounds. The Hispanic Community Health Study/Study of Latinos. Am J Respir Crit Care Med. 2014;189(3):335-44. [CrossRef] [PubMed]
- Mitterling T, Hogl B, Schonwald SV, et al. Sleep and Respiration in 100 Healthy Caucasian Sleepers--A Polysomnographic Study According to American Academy of Sleep Medicine Standards. Sleep. 2015;38(6):867-75. [CrossRef] [PubMed]
- Pavlova MK, Duffy JF, Shea SA. Polysomnographic respiratory abnormalities in asymptomatic individuals. Sleep. 2008;31(2):241-8. [CrossRef] [PubMed]
- Sforza E, Pichot V, Martin MS, Barthelemy JC, Roche F. Prevalence and determinants of subjective sleepiness in healthy elderly with unrecognized obstructive sleep apnea. Sleep Med. 2015;16(8):981-6.[CrossRef] [PubMed]
- Sforza E, Hupin D, Pichot V, Barthelemy JC, Roche F. A 7-year follow-up study of obstructive sleep apnoea in healthy elderly: The PROOF cohort study. Respirology. 2017;22(5):1007-14. [CrossRef] [PubMed]
- Buysse DJ, Reynolds CF,3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193-213. [CrossRef] [PubMed]
- Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540-5. [CrossRef] [PubMed]
- Netzer NC, Stoohs RA, Netzer CM, Clark K, Strohl KP. Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med. 1999;131(7):485-91.[CrossRef] [PubMed]
- Yesavage JA, Brink TL, Rose TL, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37-49. [CrossRef] [PubMed]
- Mattis S. Mental status examination for organic mental syndrome in the elderly patient. In: Geriatric psychiatry. Bellak L and Karasu TE, eds. New York: Grune and Stratton, 1976; 77-121
- Pangman VC, Sloan J, Guse L. An examination of psychometric properties of the mini-mental state examination and the standardized mini-mental state examination: implications for clinical practice. Appl Nurs Res. 2000;13(4):209-213. [CrossRef] [PubMed]
- Iber C, Ancoli-Israel S, Chesson A, Quan SF. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. 1st ed. Westchester, IL: American Academy of Sleep Medicine, 2007; 57.
- Quan SF, Howard BV, Iber C, et al. The Sleep Heart Health Study: design, rationale, and methods. Sleep. 1997;20(12):1077-85. [PubMed]
- Kushida CA, Nichols DA, Quan SF, et al. The Apnea Positive Pressure Long-term Efficacy Study (APPLES): rationale, design, methods, and procedures. J Clin Sleep Med. 2006;2(3):288-300. [PubMed]
- Chen X, Wang R, Zee P, et al. Racial/Ethnic Differences in Sleep Disturbances: The Multi-Ethnic Study of Atherosclerosis (MESA). Sleep. 2015;38(6):877-88. [CrossRef] [PubMed]
- Sateia MJ. International Classification of Sleep Disorders. 3rd ed. Darien, IL: American Academy of Sleep Medicine, 2014.
- He K, Kapur VK. Sleep-Disordered Breathing and Excessive Daytime Sleepiness. Sleep Med Clin. 2017;12(3):369-82.[CrossRef] [PubMed]
- Redline S, Schluchter MD, Larkin EK, Tishler PV. Predictors of longitudinal change in sleep-disordered breathing in a nonclinic population. Sleep. 2003;26(6):703-9. [CrossRef] [PubMed]
Cite as: Quan SF, Lockyer BJ, Batool-Anwar S, Aeschbach D. Out of center sleep testing in ostensibly healthy middle aged to older adults. Southwest J Pulm Crit Care. 2019;18:87-93. doi: https://doi.org/10.13175/swjpcc016-19 PDF
Obstructive Sleep Apnea and Quality of Life: Comparison of the SAQLI, FOSQ, and SF-36 Questionnaires
Graciela E Silva PhDa
James L Goodwin PhDb
Kimberly D Vana, DNP, RN, FNP-BC, FNP- Cc
Stuart F Quan MDb,d,e,f
aUniversity of Arizona College of Nursing, Tucson, AZ; bArizona Respiratory Center, University of Arizona, Tucson, AZ; cCollege of Nursing & Health Innovation, Arizona State University, Phoenix, AZ; dCollege of Medicine, University of Arizona, Tucson, AZ; eDivision of Sleep Medicine, Harvard Medical School, Boston, MA. fDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
Abstract
Introduction: The impact of sleep on quality of life (QoL) has been well documented; however, there is a great need for reliable QoL measures for persons with obstructive sleep apnea (OSA). We compared the QoL scores between the 36-Item Short Form of the Medical Outcomes Survey (SF-36), Calgary Sleep Apnea Quality of Life Index (SAQLI), and Functional Outcomes Sleep Questionnaire (FOSQ) in persons with OSA.
Methods: A total of 884 participants from the Sleep Heart Health Study second examination, who completed the SF-36, FOSQ, and SAQLI, and in-home polysomnograms, were included. The apnea hypopnea index (AHI) at 4% desaturation was categorized as no OSA (<5 /hour), mild to moderate OSA (5-30 /hour) and severe OSA (>30 /hour). QoL scores for each questionnaire were determined and compared by OSA severity category and by gender.
Results: Participants were 47.6% male, 49.2% (n=435) had no OSA, 43.2% (n=382) had mild to moderate OSA, and 7.6% (n=67) had severe OSA. Participants with severe OSA were significantly older (mean age = 63.7 years, p <.0001), had higher BMI (mean = 34.3 kg/m2, p <.0001) and had lower SF-36 Physical Component scores (PCS) (45.1) than participants with no OSA (48.5) or those with mild to moderate OSA (46.5, p= .006). When analyzed according to gender, no significant differences were found in males for QoL by OSA severity categories. However, females with severe OSA had significantly lower mean scores for the SAQLI (5.4, p= .006), FOSQ (10.9, p= .02), and SF-36 PCS (37.7, p<.0001) compared to females with no OSA (6.0, 11.5, 44.6) and those with mild to moderate OSA (5.9, 11.4, 48, respectively). Females with severe OSA also had significantly higher mean BMI (41.8 kg/m2,) than females with no OSA (26.5 kg/m2) or females with mild to moderate OSA (30.6 kg/m2, p<.0001). The SF-36 PCS and Mental Component Scores (MCS) were correlated with the FOSQ and SAQLI (r=.37 PCS vs FOSQ; r=.31 MCS vs FOSQ; r=.42 PCS vs SAQLI; r=.52 MCS vs SAQLI; and r=.66 FOSQ vs SAQLI, p<.001 for all correlations). Linear regression analyses, adjusting for potential confounders, indicated that the impact of OSA severity on QoL is largely explained by the presence of daytime sleepiness.
Conclusion: The impact of OSA on QoL differs between genders with a larger effect on females and is largely explained by the presence of daytime sleepiness. Correlations among QoL instruments are not high and various instruments may assess different aspects of QoL.
Introduction
Obstructive sleep apnea (OSA) is a highly prevalent condition occurring in as many as 17% and 9% of middle aged males and females, respectively (1). OSA is now recognized as an important risk factor for the development of hypertension and coronary heart disease as well as premature death (2). However, patients frequently present to health care providers with symptoms that are indicative of impairment in their quality of life (QoL). Improvement in QoL is an important determinant of whether patients adhere to continuous positive airway pressure (CPAP), the most commonly prescribed treatment for OSA. Additionally, measurement of QoL is one of the quality metrics recently developed for use in clinical practice (3) thus increasing the importance of evaluating tools used to assess QoL in OSA.
A variety of tools to measure QoL have been utilized in epidemiologic studies and clinical trials of OSA. The most common general QoL instrument used has been the Medical Outcomes Study Short-Form Health Survey SF-36 (4). More recently, two sleep specific QoL questionnaires have been developed, the Functional Outcomes of Sleep Questionnaire (FOSQ) (5) and the Sleep Apnea Quality of Life Inventory (SAQLI) (6). Whether these sleep specific QoL instruments are more sensitive in those with OSA than general QoL questionnaires is not clear. Furthermore, there have been few comparisons of the FOSQ to the SAQLI with respect to their sensitivity in those with OSA and whether QoL differs between males and females. Using data from a large cohort study, the purposes of these analyses were to compare these instruments to each other, to assess whether they were able to detect differences in QoL among groups with different severities of OSA and to determine whether there were differences between genders.
Methods
The Sleep Heart Health Study (SHHS) is a prospective multicenter cohort study designed to investigate the relationship between OSA and cardiovascular diseases in the United States. Details of the study design have been published elsewhere (7). Briefly, initial baseline recruitment began in 1995, enrolling 6,441 subjects, 40 years of age and older, from several ongoing geographically distinct cardiovascular and respiratory disease cohorts who were initially assembled between 1976 and 1995 (8). These cohorts included the Offspring Cohort and the Omni Cohort of the Framingham Heart Study in Massachusetts; the Hagerstown, MD, and Minneapolis, MN, sites of the Atherosclerosis Risk in Communities Study; the Hagerstown, MD, Pittsburgh, PA, and Sacramento, CA, sites of the Cardiovascular Health Study; 3 hypertension cohorts (Clinic, Worksite, and Menopause) in New York City; the Tucson Epidemiologic Study of Airways Obstructive Diseases and the Health and Environment Study; and the Strong Heart Study of American Indians in Oklahoma, Arizona, North Dakota, and South Dakota. A SHHS follow-up examination took place between February 2000 and May 2003, enrolling 4,586 of the original participants who had a repeat polysomnogram in addition to completing questionnaires and undergoing other measurements. The present study focused on 884 participants from the Tucson and Framingham sites of the Sleep Heart Health Study second examination in whom data were available from the sleep habits questionnaire, all quality of life questionnaires, and in-home polysomnograms. Data was limited to these sites because administration of the FOSQ was not done at the other field centers.
The SHHS was approved by the respective institutional review boards for human subjects research, and informed written consent was obtained from all subjects at the time of their enrollment into each stage of the study.
Polysomnography
Participants underwent overnight in-home polysomnograms using the Compumedics Portable PS-2 System (Abbottsville, Victoria, Australia) administered by trained technicians (9). Briefly, after a home visit was scheduled, the Sleep Health Questionnaire, SF-36, SAQLI, and FOSQ questionnaires generally were mailed 1 to 2 weeks prior to the in-home polysomnography appointment. Each participant was asked to complete the questionnaire before the home visit, at which time the questionnaires were collected and verified for completeness. The home visits were performed by two-person, mixed-sex teams in visits that lasted 1.5 to 2 hours. There was emphasis on making the night of the polysomnographic assessment as representative as possible of a usual night of sleep. Participants were asked to schedule the visit so that it would occur approximately two hours prior to their usual bedtime. Participants’ weekday or weekend bedtime routines were encouraged to be consistent with the day of the week that the visits were made.
The SHHS recording montage consisted of electroencephalogram (C4/A1 and C3/A2), right and left electrooculogram, a bipolar submental electromyogram, thoracic and abdominal excursions (inductive plethysmography bands), airflow (detected by a nasal-oral thermocouple [Protec, Woodinville, WA]), oximetry (finger pulse oximetry [Nonin, Minneapolis, MN]), electrocardiogram and heart rate (using a bipolar electrocardiogram lead), body position (using a mercury gauge sensor), and ambient light (on/off, by a light sensor secured to the recording garment). Sensors were placed, and equipment was calibrated during an evening home visit by a certified technician. After technicians retrieved the equipment, the data, stored in real time on PCMCIA cards, were downloaded to the computers of each respective clinical site, locally reviewed, and forwarded to a central reading center (Case Western Reserve University, Cleveland, OH). Comprehensive descriptions of polysomnography scoring and quality-assurance procedures have been previously published (9, 10). In brief, sleep was scored according to guidelines developed by Rechtschaffen and Kales (11, 12). Strict protocols were maintained to ensure comparability among centers and technicians. Intra-scorer and inter-scorer reliabilities were high (10). As in previous analyses of SHHS data, an apnea was defined as a complete or almost complete cessation of airflow, as measured by the amplitude of the thermocouple signal, lasting at least 10 seconds. Hypopneas were identified if the amplitude of a measure of flow or volume (detected by the thermocouple or thorax or abdominal inductance band signals) was reduced discernibly (at least 25% lower than baseline breathing) for at least 10 seconds and did not meet the criteria for apnea. For this study, only apneas or hypopneas associated with a 4% or greater oxyhemoglobin desaturation were considered in the calculation of the apnea hypopnea index (AHI, apneas plus hypopneas per hour of total sleep time).
Sleep Habits Questionnaire and Covariates
Participants completed the SHHS Sleep Habits Questionnaire (13). The Sleep Habits Questionnaire contained questions regarding sleep habits. Height and weight were measured directly to determine body mass index (BMI, kg/m2). Sex and ethnicity were derived from data obtained from the SHHS parent cohorts. Participants answered yes or no to having a healthcare provider diagnosing them as having chronic obstructive pulmonary disease (COPD), chronic bronchitis, or asthma.
Sleepiness
The level of daytime sleepiness was determined using the Epworth Sleepiness Scale (ESS), a validated 8-item questionnaire that measures subjective sleepiness (14). Subjects were asked to rate how likely they are to fall asleep in different situations. Each question was answered on a scale of 0 to 3. ESS values ranged from 0 (unlikely to fall asleep in any situation) to 24 (high chance of falling asleep in all 8 situations). Mean ESS scores between 14 and 16 have been reported for patients with OSA (14, 15). Scores of 11 or greater are considered to represent an abnormal degree of daytime sleepiness (16). Sleepiness was defined as an ESS of at least 10.
Quality of Life Measures
Medical Outcomes Study Short-Form Health Survey (SF-36). Quality of life was evaluated using the Medical Outcomes Study Short-Form Health survey (SF-36) (4). The SF-36 is a multipurpose self-administered health survey consisting of 36 questions divided into 8 individual domains: (1) physical functioning (limitations in physical activity because of health problems), (2) role physical (limitations in usual role activities because of physical health problems), (3) bodily pain, (4) general health perceptions; (5) vitality (energy and fatigue), (6) social functioning (limitation in social activities because of physical or emotional problems), (7) role emotional (limitation in usual role activities because of emotional problems), and (8) general mental health. In addition, the 8 scales are used to form 2 distinct high-order summary scales: the physical component summary (PCS) and the mental component summary (MCS) (17). The PCS includes the physical functioning, role physical, bodily pain, and general health scales, and the MCS includes the vitality, social functioning, role emotional, and general mental health scales. The raw scores for each subscale and the 2 summary measures are standardized, weighted, and scored according to specific algorithms. The scores for the multifunction item scales and the summary measures range from 0 to 100, with higher scores indicating better quality of life. For the present study, we use only the PCS and MCS scales.
Functional Outcomes Sleep Questionnaire (FOSQ). The FOSQ was developed as a self-report instrument to assess the disorders of sleepiness on quality of life. It consists of 30 items with 5 factor-based subscales: activity level, vigilance, intimacy and sexual relationships, general productivity and social outcome. A mean weighted item score is obtained for each subscale. The subscales are summed to produce a global score (5). In SHHS, questions related to sexual intimacy were omitted because there were concerns that some participants would find these embarrassing or offensive.
Sleep Apnea Quality of Life Index (SAQLI). The SAQLI was developed as a sleep apnea specific quality of life instrument (6). It is a 35 item instrument that captures the adverse impact of sleep apnea on 4 domains: daily functioning, social interactions, emotional functioning, and symptoms. Items are scored on a 7-point scale with “all of the time” and “not at all” being the most extreme responses. Item and domain scores are averaged to yield a composite total score between 1 and 7. Higher scores represent better quality of life. In SHHS, the short form of the SAQLI was administered, because it allowed for self-completion by the participants (18).
Statistical Analysis
Differences in proportions for descriptive characteristics between OSA severity categories, and categorical variables were analyzed using Chi-square tests with 2 degrees of freedom. Fisher’s exact test was used when the expected frequency was less than 5 in any cell. One-way analyses of variance (ANOVA) were used to compare differences in mean values for continuous variables (BMI, total sleep time, SAQLI, FOSQ, SF-36 MCS, and SF-36 PCS) by OSA severity categories and by these categories separately for males and females. Pearson’s correlations were used to test for correlation coefficients between the four quality of life scales, SAQLI, FOSQ, SF-36 MCS, and SF-36 PCS.
Separate multivariate linear regression models were fitted to evaluate scores from each of the four QoL scales by OSA categories for males and females. Potential confounders (age, race, COPD, chronic bronchitis, ESS and asthma) were evaluated and adjusted for in the models; only those variables with significant coefficients were kept in the models. Thus, OSA severity, ESS, and asthma were the only variables retained in the final models. All statistical tests were performed using statistical software (Stata SE, version 13.0 for Windows; Stata Corp; College Station, TX) and a significance level of 0.05.
Results
Participants were 47.6% male and 52.4% female, 49.2% (n=435) had no OSA, 43.2% (n=382) had mild to moderate OSA, and 7.6% (n=67) had severe OSA. Approximately 21% of participants with mild to moderate OSA and 39% of those with severe OSA reported excessive daytime sleepiness (ESS >10) (Table 1).
Participants with severe OSA were significantly older (mean age = 63.7 years, p <.0001), had higher BMI (mean = 34.3 kg/m2, p <.0001) and had lower SF-36 PCS scores (45.1, p= .006) than participants with no OSA or those with mild to moderate OSA. There was also a trend towards lower scores on the MCS of the SF-36, the SAQLI, and the FOSQ (Table 2).
When analyzed according to gender, no significant differences were found in males for QoL by OSA severity categories (Table 3).
Males with severe OSA had significantly higher BMI (mean 31.9, p<.0001) than males with no OSA or males with mild to moderate OSA. However, as shown in Table 4, females with severe OSA had significantly lower mean scores for the SAQLI (5.4, p= .006), FOSQ (10.9, p= .02), and SF-36 PCS (37.7, p<.0001) compared to females with no OSA and those with mild to moderate OSA.
Females with severe OSA also had significantly higher BMI (mean 41.8, p<.0001) than females with no OSA or females with mild to moderate OSA.
As shown in Table 5, comparisons between the QoL measures showed small correlations between the FOSQ and the SF-36 MCS (r=.31, p < .001) and the SF-36 PCS (r=.37, p <.001), and medium correlations between the SAQLI and the SF-36 MCS (r=0.52, p <.001) and the SF-36 PCS (r=.42, p < .001).
The correlation between the SAQLI and FOSQ was 0.66, p <.001, and the correlation between SF-36 MCS and SF-36 PCS was -.024, however this was not significant (p = .142). In addition, ESS scores were inversely correlated with the SAQLI (r = -.36), FOSQ (r = -.43), MCS (r = -.17), and PCS (r = -.16) (data not shown).
Because categorical analyses showed no difference for males in QoL scores, we, therefore, ran linear regression models separately for females and males (Table 6).
Discussion
In these analyses using a general (SF-36) and two sleep specific QoL assessment tools (FOSQ and SAQLI), we found that QoL was reduced in those with severe OSA; substantial differences were not apparent among participants with mild to moderate OSA and those with no OSA. However, there were significant gender disparities. Females with severe OSA demonstrated a substantial reduction in QoL with all instruments, but there was a lack of differences among males by OSA severity. The reductions in QoL were explained primarily by the presence of sleepiness. Furthermore, correlations among QoL questionnaires were modest at best, indicating that they assess different QoL domains.
When males and females were analyzed together in our study, only the PCS of the SF-36 showed a significant reduction in QoL in participants with OSA, but this was limited solely to participants with severe OSA. Additional studies also have found lower QoL only in those with severe OSA (19, 20). Moreover, other studies have failed to find any differences in QoL among participants with a broad spectrum of OSA severity (21-23). In one of these studies, Lee and colleagues (22) found that the AHI was not associated with differences in the PCS or MCS of the SF-36 in a large group of patients seen in a sleep clinic. In their study, other factors, such as age, gender, minimum oxygen saturation, sleepiness, and depression were associated with the PCS or MCS scores. Our study also found a strong trend between sleepiness and QoL scores for females and males. Similarly, in a smaller study, Lee et al. (22) did not find differences in the SAQLI among OSA patients of different severities. Our data also are consistent with a previous analysis from the first examination of SHHS in which severe OSA was associated with worse QoL on most subscales of the SF-36, but only the vitality subscale was reflective of poorer QoL in participants with OSA of less severity. In contrast, even mild OSA was associated with reduced QoL in comparison to no OSA among the middle-aged males and females of the Wisconsin Sleep Cohort (24). However, our cohort was older than participants in the Wisconsin Sleep Cohort and only a small sample from the SHHS was analyzed in the present study. Thus, age and other demographic differences among the cohorts may provide explanations for these discrepancies. Nevertheless, despite the absence of large cross-sectional differences in QoL as a function of OSA severity, in most studies, the SF-36, SAQLI, and FOSQ have been shown to be sensitive to changes in QoL after OSA treatment.
When analysis of our data was performed separately according to gender, we observed that the reduction in QoL with severe OSA was limited to females irrespective of the QoL instrument. Other studies (22) also have noted that QoL in participants with OSA is worse in women. However, in a study of a large cohort of males, Appleton et al.,(25) found that increasing AHI was associated with lower QoL on the SF-36, but only in those less than 69 years of age. The median age of the SHHS cohort is 60 years with substantial numbers of participants older than 70 years. Thus, our results and those of Appleton et al. (25) may not be discrepant necessarily.
Excessive daytime sleepiness is one of the most common symptoms in OSA, and sleepiness can have a profound negative impact on QoL. Thus, not surprisingly, our multivariate analyses demonstrated that the negative impact of severe OSA was explained primarily by the presence of sleepiness. Our finding is consistent with the findings of some, (19, 22, 23, 26) but not all previous studies (27). The explanation for these inconsistent findings is not readily apparent, but possibilities include whether study populations were recruited from the general population or clinic, as well as whether the cohorts had other co-morbidities that would impact QoL. A differential perception of sleepiness between males and females offers a possible explanation of the greater impact of OSA on QoL in the latter. However, this assertion seems unlikely inasmuch as previous studies indicate females with OSA are more likely to report fatigue rather than sleepiness (28-30).
We observed that correlations among the SF-36, SAQLI, and FOSQ were relatively weak to moderate. Our results are consistent with the few studies that have done similar comparisons. In a Spanish multicenter study (21), correlations of the FOSQ and several scales of the SF-36 with the 4 domains of the SAQLI were poor to moderate. They ranged from r=.179 between the FOSQ and SAQLI Emotional Functioning domain to r=.579 for the SF-36 Vitality and SAQLI Daily Functioning domain. In a Polish study (31), the correlation between the SF-36 and the FOSQ was r=.46 and between the SF-36 and the SAQLI was r=.47. Other studies have compared the SF-36 to other general QoL instruments in patients with OSA, with some, but not all, demonstrating reasonable correspondence (32, 33). Considering our results with other studies, various instruments may sample different aspects of QoL. Care should be exercised when selecting a tool to assess health outcomes in OSA.
There are several important limitations to our findings. First, the SHHS cohort was recruited from participants enrolled in other longitudinal studies, many of whom were long-time participants. These individuals may represent a group of survivors who would generally have better QoL regardless of OSA-severity status. Second, as a group, the SHHS cohort is older (mean age = 61.6 years) and may not be representative of the US adult population. Third, SHHS is a general population cohort, and thus, unlike a clinical cohort, some did not have symptoms of OSA. Finally, severity of OSA may not be best reflected by the AHI. Other markers of severity such as amount of oxygen desaturation or degree of sleep fragmentation may be better surrogates to show differences in QoL. Nevertheless, despite these limitations, our analyses have some unique qualities such as a well-characterized, racially and ethnically diverse cohort, use of home-based polysomnography to assess the severity of OSA, and data related to QoL derived from 3 different instruments.
In conclusion, in a middle-aged to elderly cohort, QoL is poorer only in females with severe OSA. To a large extent, these findings can be explained by the presence of daytime sleepiness. Correlations among 3 commonly used QoL instruments used in persons with OSA were weak to moderate, suggesting that each samples different aspects of QoL. Therefore, care should be exercised in selecting a QoL tool for documenting health care outcomes for research or clinical care.
Acknowledgments
The Sleep Heart Health Study (SHHS) acknowledges the Atherosclerosis Risk in Communities Study (ARIC), the Cardiovascular Health Study (CHS), the Framingham Heart Study (FHS), the Cornell/Mt. Sinai Worksite and Hypertension Studies, the Strong Heart Study (SHS), the Tucson Epidemiologic Study of Airways Obstructive Diseases (TES) and the Tucson Health and Environment Study (H&E) for allowing their cohort members to be part of the SHHS and for permitting data acquired by them to be used in the study. SHHS is particularly grateful to the members of these cohorts who agreed to participate in SHHS as well. SHHS further recognizes all of the investigators and staff who have contributed to its success. A list of SHHS investigators, staff and their participating institutions is available on the SHHS website, http://www.jhucct.com/shhs/
The opinions expressed in the paper are those of the authors and do not necessarily reflect the views of the Indian Health Service.
This work was supported by HL U01HL53940 (University of Washington), U01HL53941 (Boston University), U01HL53938 and U01HL53938-07S (University of Arizona), U01HL53916 (University of California, Davis), U01HL53934 (University of Minnesota), U01HL53931 (New York University), U01HL53937 and U01HL64360 (Johns Hopkins University), U01HL63463 (Case Western Reserve University), and U01HL63429 (Missouri Breaks Research).
Dr. Silva was supported by NHLBI grant HL 062373-05A2.
References
- Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013 May 1;177(9):1006-14. [CrossRef] [PubMed]
- Budhiraja R, Quan SF. Sleep-disordered breathing and cardiovascular health. Curr Opin Pulm Med. 2005 Nov;11(6):501-6. [CrossRef] [PubMed]
- Aurora RN, Collop NA, Jacobowitz O, Thomas SM, Quan SF, Aronsky AJ. Quality measures for the care of adult patients with obstructive sleep apnea. J Clin Sleep Med. 2015 Mar 15;11(3):357-83. [CrossRef] [PubMed]
- Ware JE Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992 Jun;30(6):473-83. [CrossRef] [PubMed]
- Weaver TE, Laizner AM, Evans LK, Maislin G, Chugh DK, Lyon K, Smith PL, Schwartz AR, Redline S, Pack AI, Dinges DF. An instrument to measure functional status outcomes for disorders of excessive sleepiness. Sleep. 1997 Oct;20(10):835-43. [PubMed]
- Flemons WW, Reimer MA. Development of a disease-specific health-related quality of life questionnaire for sleep apnea. Am J Respir Crit Care Med. 1998 Aug;158(2):494-503. [CrossRef] [PubMed]
- Quan SF, Howard BV, Iber C, Kiley JP, Nieto FJ, O'Connor GT, Rapoport DM, Redline S, Robbins J, Samet JM, Wahl PW.The Sleep Heart Health Study: design, rationale, and methods. Sleep. 1997 Dec;20(12):1077-85. [PubMed]
- Lind BK, Goodwin JL, Hill JG, Ali T, Redline S, Quan SF. Recruitment of healthy adults into a study of overnight sleep monitoring in the home: experience of the Sleep Heart Health Study. Sleep Breath. 2003 Mar;7(1):13-24. [CrossRef] [PubMed]
- Redline S, Sanders MH, Lind BK, Quan SF, Iber C, Gottlieb DJ, Bonekat WH, Rapoport DM, Smith PL, Kiley JP. Methods for obtaining and analyzing unattended polysomnography data for a multicenter study. Sleep Heart Health Research Group. Sleep. 1998 Nov 1;21(7):759-67. [PubMed]
- Whitney CW, Gottlieb DJ, Redline S, Norman RG, Dodge RR, Shahar E, Surovec S, Nieto FJ. Reliability of scoring respiratory disturbance indices and sleep staging. Sleep. 1998 Nov 1;21(7):749-57. [PubMed]
- Rechtschaffen A, Kales A. Manual of standardized techniques and scoring system for sleep stages of human subjects. Los Angeles: UCLA Brain Information Service and Brain Research Institute; 1968.
- Rechtschaffen A, Kales A. Manual of standardized techniques and scoring system for sleep stages of human subjects. Los Angeles: UCLA Brain Information Service and Brain Research Institute; 1968.
- Sleep Heart Heath Study Sleep Habits Questionnaire. Available at: https://biolincc.nhlbi.nih.gov/static/studies/shhs/SHHS_1_Forms/SHHS_1_Sleep_Habits_Questionnaire_-_MN.pdf (accessed 9/24/16).
- Johns MW. Reliability and factor analysis of the Epworth Sleepiness Scale. Sleep. 1992 Aug;15(4):376-81. [PubMed]
- Hardinge FM, Pitson DJ, Stradling JR. Use of the Epworth Sleepiness Scale to demonstrate response to treatment with nasal continuous positive airways pressure in patients with obstructive sleep apnoea. Respir Med. 1995 Oct;89(9):617-20. [CrossRef] [PubMed]
- Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991 Dec;14(6):540-5. [PubMed]
- Ware JE Jr., SF-36 Physical and Mental Health Summary Scales: a User's Manual. Boston, MA; Health Assesment Lab, New England Medical Center. 1994.
- Reimer MA, Flemons WW. Quality of life in sleep disorders. Sleep Med Rev. 2003 Aug;7(4):335-49. [CrossRef] [PubMed]
- Batool-Anwar S, Goodwin JL, Kushida CA, Walsh JA, Simon RD, Nichols DA, Quan SF. Impact of continuous positive airway pressure (CPAP) on quality of life in patients with obstructive sleep apnea (OSA). J Sleep Res. 2016 May 30. [CrossRef] [PubMed]
- Lopes C, Esteves AM, Bittencourt LR, Tufik S, Mello MT. Relationship between the quality of life and the severity of obstructive sleep apnea syndrome. Braz J Med Biol Res. 2008 Oct;41(10):908-13. [CrossRef] [PubMed]
- Catalán P, Martínez A, Herrejón A, Martínez-García MÁ, Soler-Catalu-a JJ, Román-Sánchez P, Pinel J, Blanquer R. Internal consistency and validity of the Spanish version of the quality of life questionnaire specific for obstructive sleep apnea: sleep apnea quality of life index. Arch Bronconeumol. 2012 Dec;48(12):431-42. [CrossRef] [PubMed]
- Lee W, Lee SA, Ryu HU, Chung YS, Kim WS. Quality of life in patients with obstructive sleep apnea: Relationship with daytime sleepiness, sleep quality, depression, and apnea severity. Chron Respir Dis. 2016 Feb;13(1):33-9. [CrossRef] [PubMed]
- Ye L, Liang ZA, Weaver TE. Predictors of health-related quality of life in patients with obstructive sleep apnoea. J Adv Nurs. 2008 Jul;63(1):54-63. [CrossRef] [PubMed]
- Finn L, Young T, Palta M, Fryback DG. Sleep-disordered breathing and self-reported general health status in the Wisconsin Sleep Cohort Study. Sleep. 1998 Nov 1;21(7):701-6. [PubMed]
- Appleton SL, Vakulin A, McEvoy RD, Vincent A, Martin SA, Grant JF, Taylor AW, Antic NA, Catcheside PG, Wittert GA, Adams RJ. Undiagnosed obstructive sleep apnea is independently associated with reductions in quality of life in middle-aged, but not elderly men of a population cohort. Sleep Breath. 2015 Dec;19(4):1309-16. [CrossRef] [PubMed]
- Siccoli MM, Pepperell JC, Kohler M, Craig SE, Davies RJ, Stradling JR. Effects of continuous positive airway pressure on quality of life in patients with moderate to severe obstructive sleep apnea: data from a randomized controlled trial. Sleep. 2008 Nov;31(11):1551-8. [PubMed]
- Szentkirályi A, Madarász CZ, Novák M. Sleep disorders: impact on daytime functioning and quality of life. Expert Rev Pharmacoecon Outcomes Res. 2009 Feb;9(1):49-64. [CrossRef] [PubMed]
- Chervin RD. Sleepiness, fatigue, tiredness, and lack of energy in obstructive sleep apnea. Chest. 2000 Aug;118(2):372-9. [CrossRef] [PubMed]
- Chervin RD. Epworth sleepiness scale? Sleep Med. 2003 May;4(3):175-6. [CrossRef] [PubMed]
- Tamanna S, Geraci SA. Major sleep disorders among women: (women's health series). South Med J. 2013 Aug;106(8):470-8. [CrossRef] [PubMed]
- Kasibowska-Kuźniar K, Jankowska R, Kuźniar T, Brzecka A, Piesiak P, Zwierzycki J. [Comparative evaluation of two health-related quality of life questionnaires in patients with sleep apnea]. [Article in Polish] Wiad Lek. 2004;57(5-6):229-32. [PubMed]
- Jenkinson C, Stradling J, Petersen S. Comparison of three measures of quality of life outcome in the evaluation of continuous positive airways pressure therapy for sleep apnoea. J Sleep Res. 1997 Sep;6(3):199-204. [CrossRef] [PubMed]
- Jenkinson C, Stradling J, Petersen S. How should we evaluate health status? A comparison of three methods in patients presenting with obstructive sleep apnoea. Qual Life Res. 1998 Feb;7(2):95-100. [CrossRef] [PubMed]
Cite as: Silva GE, Goodwin JL, Vana KD, Quan SF. Obstructive sleep apnea and quality of life: comparison of the SAQLI, FOSQ, and SF-36 questionnaires. Southwest J Pulm Crit Care. 2016;13(3):137-49. doi: http://dx.doi.org/10.13175/swjpcc082-16 PDF
The Impact of Sleep-Disordered Breathing on Body Mass Index (BMI): The Sleep Heart Health Study (SHHS)
Mark A. Brown, M.D. 1
James L. Goodwin, Ph.D.2
Graciela E. Silva, Ph.D, MPH.3
Ajay Behari, M.D.4
Anne B. Newman, M.D., M.P.H5,6
Naresh M. Punjabi, M.D., Ph.D.7
Helaine E. Resnick, Ph.D., M.P.H.8
John A. Robbins, M.D., M.S.H.9
Stuart F. Quan, M.D.2,10
1Department of Psychiatry, Kaiser Permanente, Portland, OR (markbrownmd@gmail.com);
2Sleep and Arizona Respiratory Centers, University of Arizona College of Medicine, Tucson, AZ(jamieg@arc.arizona.edu);
3College of Nursing & Health Innovation, Arizona State University, Tempe, AZ (Graciela.Silva@asu.edu);
4Pulmonary and Critical Care Associates of Baltimore, Baltimore, MD (ajaybehari@yahoo.com);
5Graduate School of Public Health, Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
6Division of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA (NewmanA@edc.pitt.edu);
7Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (npunjabi@jhmi.edu);
8American Association of Homes and Services for the Aging, Washington, DC (heresnick@gmail.com);
9Center for HealthCare Policy and Research, University of California, Davis, Sacramento, CA (jarobbins@ucdavis.edu);
10Division of Sleep Medicine, Harvard Medical School, Boston, MA (squan@arc.arizona.edu)
Address for correspondence and reprint requests: Stuart F. Quan, M.D., Division of Sleep Medicine, Harvard Medical School, 401 Park Dr., 2nd Floor East, Boston, MA 02215, Tel (617) 998-8842, Fax (617) 998-8823, Email: squan@arc.arizona.edu
Conflict of Interest Statement: None of the authors have conflicts of interest pertinent to the subject matter of this manuscript.
Reference as: Brown MA, Goodwin JL, Silva GE, Behari A, Newman AB, Punjabi NM, Resnick HE, Robbins JA, Quan SF. The impact of sleep-disordered breathing on body mass index (BMI): the sleep heart health study (SHHS). Southwest J Pulm Crit Care 2011;3:159-68. (Click here for PDF version of the manuscript)
Abstract
Introduction: It is well known that obesity is a risk factor for sleep-disordered breathing (SDB). However, whether SDB predicts increase in BMI is not well defined. Data from the Sleep Heart Health Study (SHHS) were analyzed to determine whether SDB predicts longitudinal increase in BMI, adjusted for confounding factors.
Methods: A full-montage unattended home polysomnogram (PSG) and body anthropometric measurements were obtained approximately five years apart in 3001 participants. Apnea-hypopnea index (AHI) was categorized using clinical thresholds: < 5 (normal), ≥ 5 to <15 (mild sleep apnea), and ³ 15 (moderate to severe sleep apnea). Linear regression was used to examine the association between the three AHI groups and increased BMI. The model included age, gender, race, baseline BMI, and change in AHI as covariates.
Results: Mean (SD) age was 62.2 years (10.14), 55.2% were female and 76.1% were Caucasian. Five-year increase in BMI was modest with a mean (SD) change of 0.53 (2.62) kg/m2 (p=0.071). A multivariate regression model showed that subjects with a baseline AHI between 5-15 had a mean increase in BMI of 0.22 kg/m2 (p=0.055) and those with baseline AHI ≥ 15 had a BMI increase of 0.51 kg/m2 (p<0.001) compared to those with baseline AHI of <5.
Conclusion: Our findings suggest that there is a positive association between severity of SDB and subsequent increased BMI over approximately 5 years. This observation may help explain why persons with SDB have difficulty losing weight.
Key Words: Sleep Apnea, Weight Gain, Obesity
Abbreviation List: PSG-polysomnogram, SDB-sleep disordered breathing, AHI-apnea hypopnea index, SHHS-Sleep Heart Health Study, BMI-body mass index, SD-standard deviation, SEM-standard error of the mean, ANOVA-analysis of variance
Introduction
There is overwhelming epidemiological and clinical data indicating that obesity is a risk factor for sleep disordered breathing (SDB).1-8 The association between obesity and SDB is substantial, with high body mass index (BMI) contributing to moderate to severe SDB in 58% of affected persons.9 The effect of obesity is greater in men than women1,10-12 although it decreases with increasing age.6,7 In addition, weight loss has been demonstrated to decrease the severity of SDB.10,13,14 Longitudinal data from population studies including the Sleep Heart Health Study (SHHS),10 the Wisconsin Sleep Cohort,15 and the Cleveland Family Study6 have initially focused on the impact of increased weight on SDB severity. However, examination of the opposite causal pathway has yet to be prospectively addressed.
Anecdotally, patients with SDB appear to have more difficulty losing weight than obese patients without SDB. They also report marked weight gain prior to confirmation of their diagnosis. Two small studies support these empiric observations.5,16 Given this limited information on the impact of SDB on BMI, data from SHHS was analyzed to examine the impact of SDB on BMI after controlling for change in AHI and severity of SDB.
Methods
Study Design and Population. The SHHS is a multi-center, community-based prospective cohort study of the natural history and cardiovascular consequences of SDB. Details of the study design, sampling, and procedures have been reported.17 Briefly, between November 1995 and January 1998 participants were recruited from several ongoing prospective cohort studies--the Framingham Offspring and Omni Studies, the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, the Strong Heart Study, and the cohort studies of respiratory disease in Tucson and of hypertension in New York. Participants were eligible if they were ≥ 40 years of age and were not being treated for sleep apnea with positive pressure therapy, an oral appliance, oxygen, or a tracheostomy. Habitual snorers < 65 years were over sampled to increase the prevalence of obstructive sleep apnea. Subjects were required to provide written consent and the protocol was approved by the institutional review boards of each of the eight investigative sites.
Data Collection. A total of 6,441 subjects completed the baseline polysomnogram (PSG), and 4,586 consented to have a second evaluation approximately five years later. This analysis focuses on the 3,040 participants who had PSG and BMI data at both time points. Data from all 215 participants who had a follow-up PSG from the New York center were excluded because they did not meet quality standards for the follow-up examination. The remaining participants died, were too ill to participate, refused to participate, were lost to follow-up or had incomplete covariate data such as weight. This latter group had a higher percentage of Whites (85%) compared with the study group (75.5%) (p-value <0.001). There also were statistically significant differences in baseline BMI, baseline AHI, and age between the study group compared with the excluded group, however, these differences were very small and were not clinically significant. There was no gender difference between the two groups.
Weight was measured on the night of the PSG examination with the participant in light clothes on a calibrated portable scale. Height was obtained at the baseline home visit if not already measured within + 3 months of the parent study. BMI was calculated as weight in kilograms divided by the square of height in meters. Baseline height was used for baseline and follow-up BMI calculations. Age, sex, and ethnicity were self-reported.
The PSG was conducted using a portable monitor (PS-2 System; Compumedics Limited, Abbotsford, Victoria, Australia), using methods previously described.18 Apnea was present if there was an absence or near absence of airflow or thoracoabdominal movement (at least < 25% of baseline) for > 10 seconds. Hypopnea was defined as a decrease in the amplitude of the airflow or thoracoabdominal movement below 70% of baseline for > 10 seconds. The apnea-hypopnea index (AHI) was calculated as the number of apnea and hypopnea events, each associated with at least a 4% decrease in oxygen saturation, divided by total sleep time in hours.
Results
Participant characteristics are provided in Table 1.
Table 1: Characteristics of participants of the Sleep Heart Health Study cohort with complete baseline and follow-up polysomnography and weight measurements as a function of sleep apnea severity.
As expected, women were over-represented in the baseline AHI < 5 group (64.9%) and men were over-represented in the AHI ³ 15 group (63.5%) (p<0.001). Baseline BMI increased as baseline AHI severity increased. Overall unadjusted five-year increase in BMI was modest with a mean (SD) BMI change of 0.53 (2.61) kg/m2. The unadjusted five-year increase in BMI was 0.63 (2.54) kg/m2 for those with baseline AHI < 5, 0.43 (2.48) kg/m2 among those with AHI ≥ 5 to < 15 and 0.37 (3.05) kg/m2 for the AHI group ≥ 15. These values were not statistically different from each other.
A multivariate regression model was constructed predicting five-year change in BMI by baseline AHI category adjusted for age, gender, race, baseline BMI, and AHI change (Table 2).
Table 2: Adjusted β coefficients of BMI change according to AHI and continuous variables in the Sleep Heart Health Study*.
Compared to baseline AHI group of < 5, those with AHI between ≥ 5 to < 15 had a mean adjusted increase in BMI of 0.21 that approached statistical significance (p=0.055). However, those with AHI ≥ 15 had a statistically significant adjusted BMI increase of 0.51 (p<0.001). Younger age, lower baseline BMI and greater AHI change also were associated with a larger BMI increase. There was a trend for women to have a greater increase in BMI, but no effect of race was observed. However, the model only accounted for 7% of the total variance. Adjusted means by baseline AHI group are displayed graphically in Figure 1.
Figure 1: Estimated Adjusted Means of BMI increase according to AHI in the Sleep Heart Health Study. Data are adjusted for baseline age (continuous), race (categorical), gender (categorical), baseline BMI (continuous), change in AHI (continuous). Covariates fixed at: baseline BMI = 28.7, baseline age 62.1, change in RDI = 2.7. Bars represent 95% confidence intervals.
Discussion
Our findings indicate that there is a positive association between severity of SDB and five-year increase in BMI. The finding was demonstrated after controlling for key covariates including age, gender, race, baseline BMI, and AHI change. This observation may help explain the difficulty patients with SDB have in trying to lose weight.
Two previous small studies have demonstrated a positive association between newly diagnosed SDB and weight gain. A retrospective study by Phillips et al. compared one-year weight histories of 53 men and women patients who were recently diagnosed with SDB with 24 control subjects matched for gender, age, BMI and percent body fat.5 Subjects in that study were somewhat younger than the SHHS cohort with an age difference of approximately 10 years. The SDB among subjects in the previous study tended to be moderate to severe with mean ± SEM AHI 33 ± 5 /h for men and 37 ± 10 /h for women. Mean ± SEM of BMI at time of diagnosis was somewhat higher than in the SHHS with 35 ± 1 kg/m2 for men and 44 ± 2 kg/m2 for women. Men and women patients with SDB had reported a recent weight gain of 7.4 ± 1.5 kg compared with a weight loss of 0.5 ± 1.7 kg (p=0.001) in obese controls without SDB. However, given the design of this study it is not possible to determine whether weight gain contributed to the onset of SDB or was a result of SDB. The study was also limited by reliance on self-report of weight gain history.
Another study by Traviss et al. prospectively evaluated 49 obese patients with newly diagnosed SDB.16 Mean ± SD of AHI at diagnosis was severe at 45 ± 27 /h. BMI at diagnosis was elevated at 36.5 ± 6.2 kg/m2. Of the 49 subjects, 43 could estimate the duration of their symptoms with 84% reporting weight gain since becoming symptomatic. Weight gain was relatively large, with a reported 17 ± 15 kg over 5.3 ± 4.8 years. However, this study was limited by the lack of a control group and reliance on self-report of weight history. These two small studies, in addition to our findings, suggest that there is an association between SDB and increased BMI.
Interestingly, unadjusted BMI change in our study was quite modest and not statistically different as a function of SDB severity. However, BMI change over time is a complex phenomenon influenced by several variables. A large (29,799 subjects) prospective study examining 5-year change in weight in a multi-ethnic cohort of men and women explored several of these relationships.19 In that study, younger men and to a greater degree, younger women were at greater risk for weight gain compared to older adults. This is consistent with our initial findings. In addition, there was a trend for women in the higher baseline BMI categories of ‘overweight’ (BMI >25– 30 kg/m2) and ‘obese’ (BMI >30 kg/m2) in the aforementioned cohort to gain more weight than men in the higher baseline BMI categories. In order to more precisely examine the effect of AHI on weight change, we controlled for these confounders in our final multivariate model thus resulting in the finding of an increase in BMI as a function of SDB severity in this study.
Several mechanisms could explain why SDB contributes to increased BMI. First, persons with SDB may have a reduction in the quantity and quality of their sleep. Recent data indicate that insufficient sleep may be a risk factor for obesity.20 Experimental sleep restriction increases ghrelin and reduces leptin production favoring appetite enhancement,21 a finding that also has been observed in a large population cohort.22 Second, those with SDB may eat a diet that favors weight gain. In support of this hypothesis, sleep restriction has been shown to increase craving for calorie dense food with high carbohydrate content. The Apnea Positive Pressure Long-Term Efficacy Study (APPLES) demonstrated that those with severe SDB consumed a diet higher in cholesterol, protein, total fat and total saturated fatty acids, even after adjusting for BMI, age, and daytime sleepiness.23 Third, a cardinal symptom of SDB is excessive daytime sleepiness. Thus, it is possible that persons with SDB engage in less physical activity because they are too fatigued to exercise. Data from APPLES indicate that recreational physical activity is less in those with SDB. However, this finding appears to be principally explained by concomitant obesity.
Weight loss frequently results in an improvement and sometimes resolution in SDB. This is most evident in those who undergo bariatric surgical procedures.24,25 Persons with SDB are frequently counseled to treat their SDB by losing weight through diet and exercise,26 an approach that is usually unsuccessful.25 Failure to primarily address SDB in conjunction with a weight reduction program may diminish the latter’s success. However, evidence to date indicates that treatment of SDB does not consistently result in weight loss. In a sample of clinical patients with SDB, treatment with CPAP did not result in weight loss. Moreover, in female patients, there was actually an increase in weight.27 In addition, consistent weight reduction was not observed in a small number of patients with severe OSA who underwent tracheostomy.28 Thus, it appears that weight gain engendered by the presence of OSA is not easily reversed despite therapy. Prospective studies will be required to determine whether primary treatment for OSA enhances weight loss programs in those with OSA.
Although this analysis demonstrated a positive association of severity of SDB on five-year increase in BMI, there are several caveats that deserve consideration. The BMI of participants tended to be lower than that seen in clinical SDB populations and a relatively small number of subjects had large changes in BMI. As previously noted, the mean BMI increase was, at best, quite modest. When converted for illustrative purposes to weight using an average height of 167 cm of the participants, those with an AHI between ≥ 5 to < 15 had a mean adjusted increase in BMI of 0.21 kg/m2 equal to 0.59 kg or 1.30 lbs. Similarly, those with AHI ≥ 15 had an adjusted BMI increase of 0.51 kg/m2 equal to 1.42 kg or 3.13 lbs. Thus, the magnitude of the changes we observed may not be applicable to clinical populations where patients with SDB may have a higher BMI. In addition, it is not known when the participants developed SDB, thus definitive inference of causality cannot be made. However, following a large undiagnosed cohort over an extended period of time to determine incidence of SDB onset and subsequent change in weight would be exceedingly difficult and costly. Additionally, the model only accounted for a small amount of the total variance in five-year BMI increase, suggesting that there are likely other unmeasured variables influencing the amount of BMI increase over time in this cohort. Finally, while not statistically significant, the unadjusted mean change in BMI was slightly less in the high RDI group in comparison to the lower RDI groups. This observation underscores the biological complexity of the interactions among weight change, SDB, age, gender and other factors.
In conclusion, our findings suggest that although weight gain is a risk factor for developing or worsening SDB, SDB may, in a reciprocal fashion, lead to increased weight gain. This may help explain why patients with SDB find it difficult to lose weight.
Acknowledgements
This work was supported by National Heart, Lung and Blood Institute cooperative agreements U01HL53940 (University of Washington), U01HL53941 (Boston University), U01HL53938 (University of Arizona), U01HL53916 (University of California, Davis), U01HL53934 (University of Minnesota), U01HL53931 (New York University), U01HL53937 and U01HL64360 (Johns Hopkins University), U01HL63463 (Case Western Reserve University), and U01HL63429 (Missouri Breaks Research).
Sleep Heart Health Study (SHHS) acknowledges the Atherosclerosis Risk in Communities Study (ARIC), the Cardiovascular Health Study (CHS), the Framingham Heart Study (FHS), the Cornell/Mt. Sinai Worksite and Hypertension Studies, the Strong Heart Study (SHS), the Tucson Epidemiologic Study of Airways Obstructive Diseases (TES) and the Tucson Health and Environment Study (H&E) for allowing their cohort members to be part of the SHHS and for permitting data acquired by them to be used in the study. SHHS is particularly grateful to the members of these cohorts who agreed to participate in SHHS as well. SHHS further recognizes all of the investigators and staff who have contributed to its success. A list of SHHS investigators, staff and their participating institutions is available on the SHHS website, www.jhucct.com/shhs.
The opinions expressed in the paper are those of the author(s) and do not necessarily reflect the views of the Indian Health Service.
These data have been presented in part at the Annual Meeting of the Associated Professional Sleep Societies, June 11, 2009, Seattle, WA.
References
- Bixler EO, Vgontzas AN, Lin HM, Ten Have T, Rein J, Vela-Bueno A, et al. Prevalence of sleep-disordered breathing in women: Effects of gender. Am J Respir Crit Care Med 2001;163:608-13.
- Bixler EO, Vgontzas AN, Ten Have T, Tyson K, Kales A. Effects of age on sleep apnea in men: I. prevalence and severity. Am J Respir Crit Care Med 1998;157:144-8.
- Carmelli D, Swan GE, Bliwise DL. Relationship of 30-year changes in obesity to sleep-disordered breathing in the western collaborative group study. Obes Res 2000;8:632-7.
- Duran J, Esnaola S, Rubio R, Iztueta A. Obstructive sleep apnea-hypopnea and related clinical features in a population-based sample of subjects aged 30 to 70 yr. Am J Respir Crit Care Med 2001;163:685-9.
- Phillips BG, Hisel TM, Kato M, Pesek CA, Dyken ME, Narkiewicz K, et al. Recent weight gain in patients with newly diagnosed obstructive sleep apnea. J Hypertens 1999;17:1297-300.
- Tishler PV, Larkin EK, Schluchter MD, Redline S. Incidence of sleep-disordered breathing in an urban adult population: The relative importance of risk factors in the development of sleep-disordered breathing. JAMA 2003;289:2230-7.
- Young T, Shahar E, Nieto FJ, Redline S, Newman AB, Gottlieb DJ, et al. Predictors of sleep-disordered breathing in community-dwelling adults: The sleep heart health study. Arch Intern Med 2002;162:893-900.
- Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 1993;328:1230-5.
- Young T, Peppard PE, Taheri S. Excess weight and sleep-disordered breathing. J Appl Physiol 2005;99:1592-9.
- Newman AB, Foster G, Givelber R, Nieto FJ, Redline S, Young T. Progression and regression of sleep-disordered breathing with changes in weight: The sleep heart health study. Arch Intern Med 2005;165:2408-13.
- Ip MS, Lam B, Tang LC, Lauder IJ, Ip TY, Lam WK. A community study of sleep-disordered breathing in middle-aged chinese women in hong kong: Prevalence and gender differences. Chest 2004;125:127-34.
- Millman RP, Carlisle CC, McGarvey ST, Eveloff SE, Levinson PD. Body fat distribution and sleep apnea severity in women. Chest 1995;107:362-6.
- Barvaux VA, Aubert G, Rodenstein DO. Weight loss as a treatment for obstructive sleep apnoea. Sleep Med Rev 2000;4:435-52.
- Grunstein RR, Stenlof K, Hedner JA, Peltonen M, Karason K, Sjostrom L. Two year reduction in sleep apnea symptoms and associated diabetes incidence after weight loss in severe obesity. Sleep 2007;30:703-10.
- Peppard PE, Young T, Palta M, Dempsey J, Skatrud J. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA 2000;284:3015-21.
- Traviss KA, Barr SI, Fleming JA, Ryan CF. Lifestyle-related weight gain in obese men with newly diagnosed obstructive sleep apnea. J Am Diet Assoc 2002;102:703-6.
- Quan SF, Howard BV, Iber C, Kiley JP, Nieto FJ, O'Connor GT, et al. The sleep heart health study: Design, rationale, and methods. Sleep 1997;20:1077-85.
- Redline S, Sanders MH, Lind BK, Quan SF, Iber C, Gottlieb DJ, et al. Methods for obtaining and analyzing unattended polysomnography data for a multicenter study. sleep heart health research group. Sleep1998;21:759-67.
- Ball K, Crawford D, Ireland P, Hodge A. Patterns and demographic predictors of 5-year weight change in a multi-ethnic cohort of men and women in australia. Public Health Nutr 2003;6:269-81.
- Chaput JP, Despres JP, Bouchard C, Tremblay A. The association between sleep duration and weight gain in adults: A 6-year prospective study from the Quebec Family Study. Sleep 2008;31:517-23.
- Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med 2004;141:846-50.
- Taheri S, Lin L, Austin D, Young T, Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004;1:e62.
- Vasquez MM, Goodwin JL, Drescher AA, Smith TW, Quan SF. Associations of dietary intake and physical activity with sleep disordered breathing in the apnea positive pressure long-term efficacy study (APPLES). J Clin Sleep Med 2008;4:411-8.
- Rasheid S, Banasiak M, Gallagher SF, Lipska A, Kaba S, Ventimiglia D, et al. Gastric bypass is an effective treatment for obstructive sleep apnea in patients with clinically significant obesity. Obes Surg 2003;13:58-61.
- Fritscher LG, Canani S, Mottin CC, Fritscher CC, Berleze D, Chapman K, et al. Bariatric surgery in the treatment of obstructive sleep apnea in morbidly obese patients. Respiration 2007;74:647-52.
- Veasey SC, Guilleminault C, Strohl KP, Sanders MH, Ballard RD, Magalang UJ. Medical therapy for obstructive sleep apnea: A review by the medical therapy for obstructive sleep apnea task force of the standards of practice committee of the american academy of sleep medicine. Sleep 2006;29:1036-44.
- Redenius R, Murphy C, O'Neill E, Al-Hamwi M, Zallek SN. Does CPAP lead to change in BMI? J Clin Sleep Med 2008;4:205-9.
- Haapaniemi JJ, Laurikainen EA, Halme P, Antila J. Long-term results of tracheostomy for severe obstructive sleep apnea syndrome. ORL J Otorhinolaryngol Relat Spec 2001;63:131-6.