Pulmonary

The Southwest Journal of Pulmonary and Critical Care publishes articles broadly related to pulmonary medicine including thoracic surgery, transplantation, airways disease, pediatric pulmonology, anesthesiolgy, pharmacology, nursing  and more. Manuscripts may be either basic or clinical original investigations or review articles. Potential authors of review articles are encouraged to contact the editors before submission, however, unsolicited review articles will be considered.

Rick Robbins, M.D. Rick Robbins, M.D.

A Summary of Outpatient Recommendations for COVID-19 Patients and Providers December 9, 2021

Richard A. Robbins MD1

Stephen A. Klotz MD2

1Phoenix Pulmonary and Critical Care Research and Education Foundation, Gilbert, AZ USA

2Division of Infectious Disease, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ USA

 

We thought a follow-up to our original brief review of COVID-19 in February, 2020 might be useful. As we write this in early December 2021, we again caution that this area is rapidly changing and what is true today will likely be outdated tomorrow. We again borrowed heavily from the Centers for Disease Control (CDC)  CDC website and the NIH website which have extensive discussions over numerous pages covering COVID-19. Our hope is to condense those recommendations. We do not discuss inpatient care in any detail.

COVID-19 Variants

The initial steps of coronavirus infection involve the specific binding of the coronavirus spike (S) protein to the cellular entry receptors which are normally on a cell. These include human aminopeptidase N (APN; HCoV-229E), angiotensin-converting enzyme 2 (ACE2; HCoV-NL63, SARS-CoV and SARS-CoV-2) and dipeptidyl peptidase 4 (DPP4; MERS-CoV).

All viruses, but especially simple single-stranded RNA viruses like COVID-19, constantly change through mutation resulting in new variants (1). The variants vary in severity and infectivity. The CDC, World Health Organization (WHO), and other public health organizations monitor COVID-19 for emergence of new variants. Some variants emerge and disappear while others persist.

The Delta variant causes more infections and spreads faster than the original SARS-CoV-2 strain of the virus that cause COVID-19 (2). Delta is currently the predominant variant of the virus in the United States causing over 99% of infections (2). On November 24, 2021, a new variant of SARS-CoV-2, B.1.1.529, was reported to the World Health Organization (WHO). This new variant was first detected in specimens collected on November 11, 2021 in Botswana and on November 14, 2021 in South Africa. On November 26, 2021, WHO named the B.1.1.529 Omicron and classified it as a variant of concern because of the number of mutations on the spike protein. As of this yesterday morning (12/8/21), the first Omicron case was reported in Arizona (2). Omicron is also present in California, Utah and Colorado and probably several other states since there is a lag between the presence of the virus and detection.

Early reports have suggested the Omicron variant might cause milder disease more often in children, raising hopes that the variant might be less severe than some of its predecessors (3). Dr. Müge Çevik, an infectious-disease specialist at the University of St Andrews, UK cautions, “Everyone is trying to find some data that could guide us but it’s very difficult at the moment.”

Symptoms

People with COVID-19 have had a wide range of symptoms reported – from none to severe illness (2). Symptoms may appear 2-14 days after exposure to the virus. Symptoms of flu and COVID-19 may be very similar and it may be hard to tell the difference between them based on symptoms alone. Testing may be needed to help confirm a diagnosis. COVID-19 seems to spread more easily than flu and causes more serious illnesses in some people. It can also take longer before people show symptoms and people can be contagious for longer. Despite mild symptoms, people infected with COVID-19 can still infect others.

Testing

Two types of viral tests are used: nucleic acid amplification tests and antigen tests (2). A viral test checks specimens from the nose or mouth by first reverse transcribing the RNA to DNA and then amplifying the DNA by polymerase chain reaction. COVID-19 antigen tests are designed for the rapid diagnosis of active infection primarily by detecting the nucleocapsid protein antigen of the SARS-CoV-2 virus. People who develop symptoms or have come into close contact with someone with COVID-19 should be tested 5–7 days after their last exposure or immediately if symptoms develop.

Prevention

The CDC recommends several steps for prevention of COVID-19 (2).

 

  1. Get Vaccinated. COVID-19 vaccines are protective against COVID-19, especially severe disease and death. Boosters should be administered as soon as possible.
  2. Wear a mask. Everyone 2 years or older who is not fully vaccinated should wear a mask in indoor public places. In general, masks are unnecessary in outdoor settings.
  3. However, in areas with high numbers of COVID-19 cases, consideration should be given to wearing a mask in crowded outdoor settings and for activities with close contact with others who are not fully vaccinated.
  4. Stay 6 feet away from others. Whenever possible, people should stay 6 feet away from others especially those who are sick. If possible, patients should be advised to maintain 6 feet between sick family members.
  5. Avoid crowds and poorly ventilated spaces. Crowded places like restaurants, bars, fitness centers, or movie theaters are high risk areas for spread of COVID-19. Indoor spaces that do not offer fresh air from the outdoors should be avoided.
  6. Test to prevent spread to others. Testing provides information about the risk of spreading COVID-19. Over-the-counter self-tests can be used at home or anywhere, are easy to use, and produce rapid results.
  7. Wash Hands Often. Hands should be washed often with soap and water after the patient blows their nose, coughs, sneezes, or is exposed to any public place.
  8. Clean and disinfect. High touch surfaces should be cleaned and disinfected regularly or as needed. This includes tables, doorknobs, light switches, countertops, handles, desks, phones, keyboards, toilets, faucets, and sinks.

 

Specific Groups

Any immunocompromised group or group living in close contact is at increased risk for COVID-19 infection and complications of the infection (2). This includes asthma, pregnancy, the elderly (>65 years), nearly all chronic diseases and jails or prisons.

Holidays

With Holiday gatherings here, many are concerned about COVID-19 especially with an unvaccinated relative or guest. First, the CDC recommends they get vaccinated (2). Second follow the recommendations under prevention above.

COVID-19 Patients

Patients with COVID-19, should follow the steps under prevention above (2). In addition, they stay home for 10 days after symptoms appear except to get medical care. Patients should be advised to drink fluids, take over-the-counter medications for symptomatic relief, and go to the emergency room or a physician’s office if needed, but call ahead. They should tell their close contacts that they may have been exposed to COVID-19.

COVID-19 Exposure

Patients should quarantine if you have been in close contact (within 6 feet of someone for a cumulative total of 15 minutes or more over a 24-hour period) with someone who has COVID-19, unless they are fully vaccinated (2). People who are fully vaccinated do not need to quarantine after contact with someone who had COVID-19 unless they have symptoms.

Travel

At this time patients should delay travel by bus, train, plane or ship unless fully vaccinated.

Treatment

The NIH has convened a COVID-19 Treatment Guidelines Panel (4). They recommend*:

 

  1. COVID-19 vaccination for everyone who is eligible according to the Advisory Committee on Immunization Practices (AI).
  2. Using one of the following anti-SARS-CoV-2 monoclonal antibodies (as post-exposure prophylaxis (PEP) for people who are at high risk of progressing to severe COVID-19:
    • Bamlanivimab 700 mg plus etesevimab 1,400 mg administered as an intravenous (IV) infusion (BIII).
    • Casirivimab 600 mg plus imdevimab 600 mg administered as subcutaneous injections (AI) or an IV infusion (BIII).
  3. Do not use hydroxychloroquine for SARS-CoV-2 PEP (AI).
  4. Do not use of other drugs for SARS-CoV-2 PEP, except in a clinical trial (AIII).
  5. Do not use any drugs for SARS-CoV-2 pre-exposure prophylaxis, except in a clinical trial (AIII).

 

*Rating of Recommendations: A = Strong; B = Moderate; C = Optional Rating of Evidence: I = One or more randomized trials without major limitations; IIa = Other randomized trials or subgroup analyses of randomized trials; IIb = Nonrandomized trials or observational cohort studies; III = Expert opinion

References

 

  1. Yang H, Rao Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol. 2021 Nov;19(11):685-700. [CrossRef] [PubMed]
  2. CDC. COVID-19. Available at: https://www.cdc.gov/coronavirus/2019-ncov/index.html (accessed 12-6-21).
  3. Callaway E, Ledford H. How bad is Omicron? What scientists know so far. Nature. 2021 Dec 2. [CrossRef] [PubMed]
  4. NIH. COVID-19 Treatment Guidelines. October 27, 2021. Available at: https://www.covid19treatmentguidelines.nih.gov/ (accessed 12/6/21).

 

Cite as: Robbins RA, Klotz SA. A Summary of Outpatient Recommendations for COVID-19 Patients and Providers December 9, 2021. Southwest J Pulm Crit Care. 2021;23(6):151-5. doi: https://doi.org/10.13175/swjpcc066-21 PDF 

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

Alveolopleural Fistula In COVID-19 Treated with Bronchoscopic Occlusion with a Swan-Ganz Catheter

Nathaniel Hitt DO1

Aleksey Tagintsev DO1

Douglas Summerfield MD1

Evan Schmitz MD2 

1MercyOne North Iowa Medical Center, Des Moines, IA USA

2Airod Medical, Gainesville, FL USA

Abstract

Pneumothorax and pneumomediastinum are known complications of COVID-19 patients. They have been documented to occur both with and without mechanical ventilation. There are several reports of cases further complicated by alveolopleural or bronchopleural fistulas. However, there are no studies and only a few case reports on the treatment options used for alveolopleural fistulas in COVID-19 patients. To our knowledge, there is only one report of bronchoscopic treatment with endobronchial valves in a COVID-19 patient. We present the case of a 63-year-old male with COVID-19, pneumothorax, and an alveolopleural fistula that was successfully sealed using bronchoscopic occlusion with a Swan-Ganz catheter.

Abbreviation List

  • COVID-19: Severe acute respiratory distress syndrome coronavirus-2
  • PAL: Persistent air leak
  • APF: Alveolopleural fistula
  • PaO2: Partial pressure of arterial oxygen
  • FiO2: Fraction of inspired oxygen

Background

Pneumothorax complicates 1% of COVID-19 hospital admissions and the risk increases with mechanical ventilation (1). There have been several reports of pneumothoraces in COVID-19 complicated by persistent air leaks (PAL) and alveolopleural fistulas (APFs) (1-3). APFs are a communication between the pulmonary parenchyma of the alveoli and the pleural cavity. The most common cause is lung reduction surgery, but it can also be present following spontaneous pneumothorax.  Less commonly it can be caused by pulmonary infection. Clinically, APFs present as a PAL on chest tube drainage with a PAL defined as a duration greater than 5 days. Complications include pleural infection and ventilation/perfusion mismatch with a loss of positive end expiratory pressure.  APFs in non-COVID patients have been associated with an increased duration of chest tube, prolonged hospital stay, and increased morbidity a drainage and mortality. Treatments in non-COVID patients have ranged from insertion of additional thoracostomy tubes, surgical intervention, and bronchoscopic intervention (2). There is one reported case of an APF in COVID-19 successfully treated with endobronchial valves (3). Here we present the case of an APF in COVID-19 treated with bronchoscopic occlusion with a Swan-Ganz catheter.

Case Presentation

The patient was a 63-year-old man diagnosed with COVID-19 who required intubation, mechanical ventilation, and admission to the critical care unit. On hospital day 2 chest x-ray revealed bilateral pneumothoraces requiring chest tube placement. Bilateral PAL was present and on hospital day 10 the patient developed a moderate sized right sided pneumothorax despite the adequately positioned chest tube. The initial thoracostomy tube was replaced with a large bore chest tube with immediate resolution of the pneumothorax. However, a moderate air leak persisted and by hospital day 14, the diagnosis of APF was suspected. Bronchoscopic occlusion using the balloon of a Swan-Ganz catheter was performed.

A Swan-Ganz catheter was inserted through the endotracheal tube and along-side of a bronchoscope. The balloon was sequentially inflated and deflated to occlude each lobe to assess for air leak resolution. The air leak was reduced, but not resolved with occlusion of the right lower lobe and right middle lobe individually. The balloon was inflated just enough to occlude the right bronchus intermedius with near complete resolution of the leak (Figure 1).

Figure 1. Chest radiograph showing Swan-Ganz catheter (yellow arrow) with its cuff inflated in the right bronchus intermedius to seal an alveolopleural fistula.

The patient was observed for ten minutes to ensure tolerability before concluding the procedure. He was kept paralyzed to reduce coughing. After 3 days the air leak resolved, the Swan-Ganz catheter was removed, and the air leak remained sealed. The PaO2:FiO2 ratio improved from 79 to 250. However, despite initial improvement and no air leak the patient's conditioned worsened in the setting of multisystem organ failure. Multisystem organ failure was attributed to a combination of severe acute respiratory distress syndrome, cytokine storm, and septic shock from a urinary tract infection. The patient's family made the decision to withdraw care on day 22.

Discussion

Despite several cases of refractory pneumothorax in COVID-19, the significance and optimal treatment remains unclear (1,3,4). There is one report of two COVID-19 patients treated with thoracoscopy, bleb resection, and pleurectomy(4) and a single report of endobronchial valves (3). Conservative management with prolonged chest tube remains the recommended treatment (2). The American College of Chest Physicians guidelines only recommend bronchoscopic treatment in refractory cases when surgery is not possible (2). This patient was not a surgical candidate due to his instability, endobronchial valves were unavailable at our facility, and at height of the COVID-19 pandemic, transfer to a tertiary care center was not possible. Bronchoscopic occlusion with a balloon catheter has been described previously in a case a of PAL secondary to polymicrobial pneumonia, pulmonary interstitial emphysema, and in a case of necrotic lung complicated by hydropneumothorax (2,5,6). Bronchoscopy in COVID-19 is associated with an increased risk of infection and its use should be limited if possible. In this case, it was determined that with proper personal protective equipment and lack of access to other treatments, bronchoscopic occlusion was the best option.

An 8.0 French Swan-Ganz catheter was selected for its balloon that connects to an integrated stopcock to maintain inflation and for its relative availability. We classified the PAL as an APF after the leak was revealed to be distal to the segmental bronchi. The average time to resolution is reported to be 4-7.5 days (2). The decision to maintain occlusion for 3 days was based on the above average, patient improvement, and the lack of drainage from the occluded lung. The risk of infection, in particular pneumonia and empyema, must be considered when using this technique.  Ideally, an endobronchial valve would have been available to allow a one-way valve to drain secretions (2). Our patient was closely monitored for developing pulmonary infection with daily chest radiography and, following the removal of the Swan-Ganz Catheter, a bacterial sputum culture which was negative.

Conclusion

There are no randomized controlled trials investigating which treatment of PALs is most effective or safe in COVID-19 patients or even in non-COVID-19 patients (2). Furthermore, pneumothorax and persistent air leaks in COVID-19 patients have not been universally shown to increase mortality (1). However, considering the known morbidity and mortality associated with PALs, we suggest it may be reasonable in cases refractory to thoracostomy tube to treat with a Swan-Ganz catheter when otherresources are not available.

Acknowledgement

Peter L. Larsen PhD for editorial and administrative support.

References

  1. Martinelli AW, Ingle T, Newman J, et al. COVID-19 and pneumothorax: a multicentre retrospective case series. Eur Respir J. 2020 Nov 19;56(5):2002697. [CrossRef] [PubMed]
  2. Sakata KK, Reisenauer JS, Kern RM, Mullon JJ. Persistent air leak - review. Respir Med. 2018 Apr;137:213-218. [CrossRef] [PubMed]
  3. Pathak V, Waite J, Chalise SN. Use of endobronchial valve to treat COVID-19 adult respiratory distress syndrome-related alveolopleural fistula. Lung India. 2021 Mar;38(Supplement):S69-S71. [CrossRef] [PubMed]
  4. Aiolfi A, Biraghi T, Montisci A, et al. Management of Persistent Pneumothorax With Thoracoscopy and Bleb Resection in COVID-19 Patients. Ann Thorac Surg. 2020 Nov;110(5):e413-e415. [CrossRef] [PubMed]
  5. Ellis JH, Sequeira FW, Weber TR, Eigen H, Fitzgerald JF. Balloon catheter occlusion of bronchopleural fistulae. AJR Am J Roentgenol. 1982 Jan;138(1):157-9. [CrossRef] [PubMed]
  6. Schmitz ED. A new interventional bronchoscopy technique for the treatment of bronchopleural fistula. Southwest J Pulm Crit Care. 2017;15(4):174-8. [CrossRef]

Cite as: Hitt N, Tagintsev A, Summerfield D, Schmitz E. Alveolopleural Fistula In COVID-19 Treated with Bronchoscopic Occlusion with a Swan-Ganz Catheter. Southwest J Pulm Crit Care. 2021;23(4):100-3. doi: https://doi.org/10.13175/swjpcc026-21 PDF 

Read More