Imaging
Those who care for patients with pulmonary, critical care or sleep disorders rely heavily on chest radiology and pathology to determine diagnoses. The Southwest Journal of Pulmonary, Critical Care & Sleep publishes case-based articles with characteristic chest imaging and related pathology.
The editor of this section will oversee and coordinate the publication of a core of the most important chest imaging topics. In doing so, they encourage the submission of unsolicited manuscripts. It cannot be overemphasized that both radiologic and pathologic images must be of excellent quality. As a rule, 600 DPI is sufficient for radiographic and pathologic images. Taking pictures of plain chest radiographs and CT scans with a digital camera is strongly discouraged. The figures should be cited in the text and numbered consecutively. The stain used for pathology specimens and magnification should be mentioned in the figure legend. Those who care for patients with pulmonary, critical care or sleep disorders rely heavily on chest radiology and pathology to determine diagnoses. The Southwest Journal of Pulmonary, Critical Care & Sleep publishes case-based articles with characteristic chest imaging and related pathology. The editor of this section will oversee and coordinate the publication of a core of the most important chest imaging topics. In doing so, they encourage the submission of unsolicited manuscripts. It cannot be overemphasized that both radiologic and pathologic images must be of excellent quality. As a rule, 600 DPI is sufficient for radiographic and pathologic images. Taking pictures of plain chest radiographs and CT scans with a digital camera is strongly discouraged. The figures should be cited in the text and numbered consecutively. The stain used for pathology specimens and magnification should be mentioned in the figure legend.
May 2024 Medical Image of the Month: Hereditary Hemorrhagic Telangiectasia in a Patient on Veno-Arterial Extra-Corporeal Membrane Oxygenation

Figure 1. Preoperative nasopharyngoscopic direct visualization of telangiectasia of the nasal turbinate.

Figure 2. Noncontrast head CT on postoperative day 3 demonstrates extensive multifocal areas of low attenuation consistent with early signs of infarction involving much of the cerebral hemispheres, most prominently involving the left parietal lobe.
A 54-year-old man with a complex cardiac history, including Tetralogy of Fallot requiring Blalock-Taussig shunt in infancy, infundibular patch repair at age 7, and bioprosthetic tricuspid valve replacement at age 52, had ongoing frequent hospitalizations with decompensated right ventricular heart failure secondary to native pulmonary valve mixed stenosis plus regurgitation and left pulmonary artery stenosis. His case was further complicated by his history of hereditary hemorrhagic telangiectasia (HHT) with recurrent epistaxis and recent GI bleeds with multiple angiodysplastic lesions throughout the stomach, duodenum, and descending colon which were previously treated with argon plasma coagulation.
The patient was admitted to our hospital in NYHA class IV heart failure receiving a continuous dopamine infusion and aggressive diuresis. Upon admission, a right heart catheterization demonstrated severe pulmonary valve regurgitation, left pulmonary artery stenosis, and systemic hypoxemia suggestive of an intrapulmonary shunt. Admission transthoracic echocardiogram demonstrated normal left ventricular ejection fraction of 55-60%, a severely enlarged right ventricle, moderately reduced right ventricular systolic function, severe pulmonary valve regurgitation, and moderate pulmonary valve stenosis.
A multidisciplinary team including congenital cardiology, pulmonary hypertension, interventional pediatric cardiology, and congenital cardiovascular surgery was consulted and after extensive discussions the patient consented to surgical intervention. Prior to his operative date, he underwent cauterization of his bilateral nasal cavity telangiectasias by Otolaryngology (Figure 1). On hospital day sixteen, he underwent a fourth time redo median sternotomy, pulmonary valve replacement with St. Jude Epic 27-mm porcine bioprosthesis, and repair of left pulmonary artery stenosis. Intraoperative transesophageal echocardiogram at the end of the surgical case demonstrated severe right ventricular dilation, severe right ventricular systolic dysfunction, normal pulmonary valve prosthesis, and left ventricular ejection fraction of 55%. The case was technically challenging requiring a cardiopulmonary bypass time of 178 minutes, and massive transfusion (including twelve units packed red blood cells, two packs of platelets, 4 units fresh frozen plasma, and 10 units cryoprecipitate) for a total estimated blood loss of 3.9 L.
Postoperatively, he had persistent right ventricular systolic dysfunction and diffuse mediastinal hemorrhage. By postoperative day two, a repeat transesophageal echocardiogram revealed worsening right ventricular dilation and severe right ventricle systolic dysfunction. The multidisciplinary care team recommended central venoarterial extracorporeal membrane oxygenation (VA ECMO) support for both worsening hypoxemia and continuing severe right ventricular failure. The aorta was cannulated with a 22 French Bio-Medicus cannula (Medtronic, Minneapolis, USA) and the right atrium cannulated with a 36 French venous cannula (Medtronic, Minneapolis, USA), and full ECMO support was initiated using a Cardiohelp console with a HLS 7.0 oxygenator (Getinge, Goteborg, Sweden) reaching ECMO blood flows of 6 L/minute (an indexed ECMO blood flow of 2.6 L/minute/m2).
On POD 3, bronchoscopy was performed and revealed diffuse thin bloody secretions in the distal airways without a focal source, which was cleared with suction but quickly reaccumulated. Due to the pulmonary hemorrhage and recent mediastinal hemorrhage, systemic anticoagulation was not started at that time. Due to a lack of awakening during a sedation vacation, computed tomography (CT) imaging of his head was obtained and demonstrated a large ischemic stroke affecting the majority of the left MCA territory and part of the right parietal lobe (Figure 2).
HHT (also known as Osler-Weber-Rendu disease) is an autosomal dominant genetic disease with various vascular manifestations (1). In addition to the more common mucocutaneous and gastrointestinal tract telangiectasias, some patients with HHT also have pulmonary arteriovenous malformations (AVMs) with right-to-left shunt that can cause hypoxemia with resultant polycythemia. Cerebral AVMs present a risk of intracranial hemorrhage, ischemia, and hydrocephalus, which correlate with the size of the vascular defect. Given the presence of AVMs and hemorrhagic complications related to telangiectasias, the use of extracorporeal membrane oxygenation (ECMO) in patients with HHT is a potentially high-risk situation.
This case highlights the risks of ECMO in patients with HHT. The causes of this patient’s hemorrhagic and thrombotic events were most likely multifactorial, including contributions from a dilutional and consumptive coagulopathy after cardiopulmonary bypass and hemorrhage, initiation of ECMO, kidney failure, and his underlying HHT. The timing and precise cause of our patient’s cerebral infarction are unclear. However, patients with HHT and clinically significant intrapulmonary AVMs may have an increased risk of paradoxical thromboembolic stroke (2). The international HHT expert guidelines assert that even though HHT is a hemorrhagic disorder, it provides no protection against thrombosis (3). In addition, patients with HHT may levels of von Willebrand factor and factor VIII, which would potentially increase their risk of thrombosis (4). This case exemplifies the substantial risks of hemorrhagic and thrombotic complications associated with ECMO for patients with HHT. Further study is needed to help determine whether HHT should be considered a contraindication to ECMO.
Theodore O. Loftsgard, APRN, CNP1,2; Kari A. Wilson, APRN, CNP1,2; John K. Bohman, MD2,3
1Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN
2Critical Care Independent Multidisciplinary Program, Mayo Clinic, Rochester, MN
3Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
References
- Faughnan ME, Palda VA, Garcia-Tsao G, et al. International guidelines for the diagnosis and management of hereditary haemorrhagic telangiectasia. J Med Genet. 2011 Feb;48(2):73-87. [CrossRef] [PubMed]
- Dittus C, Streiff M, Ansell J. Bleeding and clotting in hereditary hemorrhagic telangiectasia. World J Clin Cases. 2015 Apr 16;3(4):330-7. [CrossRef] [PubMed]
- Faughnan ME, Mager JJ, Hetts SW, et al. Second International Guidelines for the Diagnosis and Management of Hereditary Hemorrhagic Telangiectasia. Ann Intern Med. 2020 Dec 15;173(12):989-1001. [CrossRef] [PubMed]
- Shovlin CL, Sulaiman NL, Govani FS, Jackson JE, Begbie ME. Elevated factor VIII in hereditary haemorrhagic telangiectasia (HHT): association with venous thromboembolism. Thromb Haemost. 2007 Nov;98(5):1031-9. [PubMed]
November 2018 Imaging Case of the Month: Respiratory Failure in a 36-Year-Old Woman
Michael B. Gotway, MD
Department of Radiology
Mayo Clinic Arizona
Scottsdale, AZ USA
Clinical History: A 36–year old woman presented with complaints of shortness of breath and worsening dyspnea on exertion. She had a reported history of central nervous system vasculitis of uncertain etiology, treated with azathioprine and prednisone currently, and cyclophosphamide in the past. Her symptoms reportedly responded well to this regimen. Her diagnosis of central nervous system vasculitis was established 6 months earlier when the patient presented with upper extremity paresthesia, headache, left arm weakness, diplopia, and a right eye visual field deficit, evidently with brain imaging showing some pathologic changes, although those records were not available at her presentation. Reportedly she responded well to her immunosuppressive therapy and her steroid and azathioprine doses had been tapered accordingly. Her past medical history was otherwise remarkable for a history of migraine headaches, depression, childhood asthma, hemorrhagic cystitis due to cyclophosphamide (which prompted discounting this drug in favor of azathioprine for the purported central nervous system vasculitis) in the past, and endometriosis.
The patient is a former smoker for a total of 5 pack-years, quitting years previously. She is the mother of a 3-year-old child. The patient denied alcohol and drug use. A history of penicillin allergy was elicited. In addition to azathioprine and prednisone, her medications included inhaled budesonide, Bactrim, escitalopram, topiramate, and sumatriptan/naproxen sodium as well as a multivitamin. There was some history of fenfluramine/phentermine (“Fen-Fen”) use years earlier.
Her physical examination was largely unremarkable. The patient complained of head pain and was visibly mildly dyspneic, but her lungs were clear and no abnormal heart sounds were detected. Her extremities appeared normal- no ecchymosis, cyanosis, or clubbing was detected. She did have some prior history suggesting the presence of erythema nodosum, now presenting as an erythematous region on the right lower extremity, which underwent biopsy, although changes characteristic of erythema nodosum were not present at her current examination. Reportedly this region had been injured when she bumped the right lower extremity on a chair, and this injury evidently became infected, requiring drainage, yielding cultures positive for Staphylococcus aureus and, about 1 month later, Actinomyces israelii. Her vital signs should normal pulse rate and blood pressure, breathing at 26 breaths / minute. Her room air oxygen saturation was 93%.
Frontal and lateral chest radiography (Figure 1) was performed.
Figure 1. Frontal (A) and lateral (B) chest radiography.
Which of the following represents the most accurate assessment of the chest radiographic findings? (Click on the correct answer to be directed to the second of twelve pages)
- Chest radiography shows basilar fibrotic opacities
- Chest radiography shows bilateral pleural effusions
- Chest radiography shows cavitary pulmonary lesions
- Chest radiography shows marked cardiomegaly
- Chest radiography shows numerous small nodular opacities
Cite as: Gotway MB. November 2018 imaging case of the month: Respiratory failure in a 36-year-old woman. Southwest J Pulm Crit Care. 2018;17(5):119-33. doi: https://doi.org/10.13175/swjpcc114-18 PDF
Medical Image of the Week: Massive Cerebral Infarction
Figure 1. Movie of head CT scan.
Figure 2. Movie of head MRI.
A 77 year old man with a history of chronic heart failure was admitted to the hospital complaining of left sided hemiparesis for about an hour. He was oriented but had slurred speech and was unable to move his left arm or leg. His pulse was irregular and ECG showed atrial fibrillation. A CT scan of the head (Figure 1) was interpreted as relatively unremarkable. Magnetic resonance imaging (MRI) of the head (Figure 2) showed massive right brain infarction. These studies illustrate the higher sensitivity of MRI in comparison to CT in the detection of stroke, especially early after the onset on symptoms (1).
Nijamudin Samani, MD; Yong-Jie Yin, MD; Sanjaya Karki, MD; and Jing-Xiao Zhang, MD
Department of Emergency and Critical Care
Second Hospital of Jilin University
Norman Bethune College of Medicine
Changchun, China
Reference
- Chalela JA, Kidwell CS, Nentwich LM, Luby M, Butman JA, Demchuk AM, Hill MD, Patronas N, Latour L, Warach S. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet. 2007;369(9558):293-8. [CrossRef] [PubMed]
Reference as: Samani N, Yin YJ, Karki S, Zhang JX. Medical image of the week: massive cerebral infarction. Soutwest J Pulm Crit Care. 2013;7(1):25-6. doi: http://dx.doi.org/10.13175/swjpcc084-13 PDF