Imaging

Those who care for patients with pulmonary, critical care or sleep disorders rely heavily on chest radiology and pathology to determine diagnoses. The Southwest Journal of Pulmonary, Critical Care & Sleep publishes case-based articles with characteristic chest imaging and related pathology.

The editor of this section will oversee and coordinate the publication of a core of the most important chest imaging topics. In doing so, they encourage the submission of unsolicited manuscripts. It cannot be overemphasized that both radiologic and pathologic images must be of excellent quality. As a rule, 600 DPI is sufficient for radiographic and pathologic images. Taking pictures of plain chest radiographs and CT scans with a digital camera is strongly discouraged. The figures should be cited in the text and numbered consecutively. The stain used for pathology specimens and magnification should be mentioned in the figure legend. Those who care for patients with pulmonary, critical care or sleep disorders rely heavily on chest radiology and pathology to determine diagnoses. The Southwest Journal of Pulmonary, Critical Care & Sleep publishes case-based articles with characteristic chest imaging and related pathology. The editor of this section will oversee and coordinate the publication of a core of the most important chest imaging topics. In doing so, they encourage the submission of unsolicited manuscripts. It cannot be overemphasized that both radiologic and pathologic images must be of excellent quality. As a rule, 600 DPI is sufficient for radiographic and pathologic images. Taking pictures of plain chest radiographs and CT scans with a digital camera is strongly discouraged. The figures should be cited in the text and numbered consecutively. The stain used for pathology specimens and magnification should be mentioned in the figure legend.

Rick Robbins, M.D. Rick Robbins, M.D.

Medical Image of the Week: Cheyne-Stokes Respiration

Figure 1. Cheyne-Stokes Breathing pattern seen. The red arrow indicates the cycle time which is defined as the duration of the central apnea (or hypopnea) + the duration of a respiratory phase.

A 62 year-old male with a past medical history congestive heart failure, chronic obstructive pulmonary disease, and obesity with a body mass index of 38.02 kg/m2 underwent an overnight polysomnogram for clinical suspicion for obstructive sleep apnea. He was found to have a periodic breathing as seen in the image above.

Cheyne-stokes respiration (CSR) is a type of periodic breathing characterized by crescendo-decrescendo pattern of respiration separated by central sleep apneas (CSA) or hypopneas (1). CSR-CSA may be seen in up to 15-37% of systolic heart failure patients (2,3). A longer cycle length, usually between 45-90 seconds, as well as the waxing and waning breathing pattern differentiate CSR from other forms of cyclic central apnea. CSA leads to chronically increased sympathetic activity and exerts multiple deleterious effects on the failing heart (2). The presence of CSR has been associated with higher mortality and rapid deterioration in cardiac function (4).

Jared Bartell and Safal Shetty, MD

University of Arizona Medical Center

Tucson, AZ

References

  1. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, Redline S, Strohl KP, Davidson Ward SL, Tangredi MM; American Academy of Sleep Medicine. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8(5):597-619. [CrossRef]  [PubMed]
  2. Yumino D, Bradley TD. Central sleep apnea and Cheyne-Stokes respiration. Proc Am Thorac Soc. 2008;5(2):226-36. [CrossRef] [PubMed]
  3. Garcia-Touchard A, Somers VK, Olson LJ, Caples SM. Central sleep apnea: implications for congestive heart failure. Chest. 2008;133(6):1495-504. [CrossRef] [PubMed]
  4. Hanly PJ, Zuberi-Khokhar NS. Increased mortality associated with Cheyne-Stokes respiration in patients with congestive heart failure. Am J Respir Crit Care Med. 1996;153(1):272-6. [CrossRef] [PubMed] 

Reference as: Bartell J, Shetty S. Medical image of the week: Cheyne-Stokes respiration. Southwest J Pulm Crit Care. 2015;10(3):145-6. doi: http://dx.doi.org/10.13175/swjpcc017-15 PDF

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

Medical Image of the Week: Cheyne-Stokes Respiration on Overnight Polysomnography

 

Figure 1. 300 second polysomnogram window showing crescendo-decrescendo pattern of Cheyne-Stokes respiration (solid black arrows). Cycle length is approximately 60 seconds in duration (Outlined black arrows).

A 75 year old man with a significant past medical history of atrial fibrillation, hypertension, complete heart block status-post pacemaker implantation, thoracic aortic aneurysm, and ischemic cardiomyopathy, was referred to the sleep laboratory for evaluation for suspected sleep disordered breathing. The patient had subjective complaints of morning headaches, reported apnea, un-refreshing sleep, nocturnal urination, and intermittent snoring. The diagnostic polysomnogram was significant for periodic breathing, Cheyne-Stokes pattern, with a cycle length that ranged from 60-65 seconds (Figure 1). Oxygen saturation nadir was 79% as measured by pulse oximetry. Electrocardiogram showed a persistently paced rhythm.

Cheyne-Stokes respiration is a periodic breathing pattern characterized by crescendo-decrescendo episodes of respiratory effort that are interspersed between periods of apnea. It is typically seen in individuals with systolic heart failure, but can also be seen in those with intracerebral hemorrhage or infarction. The mechanism for Cheyne-Stokes respiration involves increased central controller gain causing increased central nervous system sensitivity to changes in arterial blood gas PCO2 and PO2. Increased circulation time results in circulatory delay between gas exchange occurring at the alveolar capillary membrane and the central chemoreceptors in the medulla. The result is instability in respiration (1).

Ryan Nahapetian, MD, MPH and Sairam Parthasarathy, MD

Pulmonary, Allergy, Critical Care, & Sleep Medicine

University of Arizona, Tucson, AZ

Reference

  1. Quaranta AJ, D'Alonzo GE, Krachman SL. Cheyne-Stokes respiration during sleep in congestive heart failure. Chest. 1997;111(2):467-73. [CrossRef] [PubMed]

Reference as: Nahapetian R, Parthsarathy S. Medical image of the week: Cheyne-Stokes respiration on overnight polysomnography. Southwest J Pulm Crit Care. 2014;8(6):328-9. doi: http://dx.doi.org/10.13175/swjpcc055-14 PDF

Read More