Critical Care
The Southwest Journal of Pulmonary and Critical Care publishes articles directed to those who treat patients in the ICU, CCU and SICU including chest physicians, surgeons, pediatricians, pharmacists/pharmacologists, anesthesiologists, critical care nurses, and other healthcare professionals. Manuscripts may be either basic or clinical original investigations or review articles. Potential authors of review articles are encouraged to contact the editors before submission, however, unsolicited review articles will be considered.
First-Attempt Endotracheal Intubation Success Rate Using A Telescoping Steel Bougie
Evan D. Schmitz, MD
La Jolla, CA USA
Kevin Park, MD, MBA, FCCP
MLK Community Medical Group
Compton, CA USA
Abstract
Background
There has been a renewed interest in using the plastic intubation bougie to facilitate first-attempt endotracheal intubation success. The sterile single-use telescopic steel bougie (AIROD) was invented to overcome the limitations of the plastic bougie which is easily deformed during storage.
Methods
This is a retrospective study involving critically ill patients who were intubated with the AIROD in the intensive care unit at a single institution. The purpose of this case series is to compare the success rate of the AIROD to the generally accepted success rate for the traditional plastic bougie of 96%.
Results
A total of 54 patients were enrolled at a single ICU over a 10 months period. All patients were critically ill with 76% having a difficult airway, Cormack-Lehane grade view 2 or greater in 60%, and ARDS secondary to COVID-19 in 54%. The primary outcome of first-attempt intubation success in critically ill patients intubated in the ICU with the AIROD was 97% with a 95% confidence interval of 0.89 to 0.99. The average time for intubation of all airway classifications was 15 seconds.
Conclusion
The AIROD first-attempt intubation success rate was found to be similar to the rate for the traditional plastic bougie.
Introduction
The BEAM (Bougie Use in Emergency Airway Management) trial, renewed interest in the use of a bougie rather than a stylet (1). In the BEAM trial, first-attempt endotracheal intubation success using a plastic bougie was compared to a stylet during laryngoscopy in an emergency department. First-attempt success was achieved in in 98% compared to 87% in all patients. In patients with at least one difficult airway characteristic, first-pass success using a plastic bougie was 96% compared to 82% using a stylet.
In 2019, the sterilized single-use telescopic steel bougie, AIROD (AIRODMedical; FL, USA), was introduced to the USA market (Figure 1).
Figure 1. A: AIROD closed. B: AIROD open. C: AIROD with an endotracheal tube loaded on the distal end.
The thin surgical steel construction of the AIROD allows it to bend slightly while maintaining its integrity to help manipulate oropharyngeal tissue without causing trauma. The AIROD can guide a 6.5 mm or larger endotracheal tube into the trachea. To do so, the AIROD is introduced into the oropharynx alongside a laryngoscope, either direct or video, and advanced just past the vocal cords. An endotracheal tube is then slid down over the AIROD and into the trachea securing the airway to allow for mechanical ventilation. The AIROD telescopes from one foot when closed to two feet when opened, offering many storage options.
Several publications have demonstrated that the AIROD is a safe and effective tool for endotracheal intubation (2-5). In this manuscript we extend those observations.
Methods
A retrospective analysis of all endotracheal intubations that were performed with the AIROD in the ICU at a single institution (Mercy One Hospital in Sioux City, IA) between October 18, 2020 and January 1, 2020 were included.
A successful first-attempt intubation was defined as the placement of an endotracheal tube into the trachea upon the initial insertion of the laryngoscope into the oropharynx. If the laryngoscope had to be removed and a second-attempt performed, it was considered a failure. Airways were graded using the Cormack-Lehane grade view (Appendix 1).
A difficult airway was defined as the presence of body fluids obscuring the laryngeal view, airway obstruction or edema, obesity, short neck, small mandible, large tongue, facial trauma, stiff neck or the need for cervical spine immobilization (2). Intubation time was defined as the time from insertion of the laryngoscope to placement of an endotracheal tube with its cuff inflated.
Results
Patient characteristics are shown in Table 1.
Table 1. Characteristics and outcomes of the critically ill patients intubated with the AIROD in the ICU.
A total of 54 patients with an average age of 62 years were included in the study. All patients were in critical condition. The average patient was obese with a BMI of 31.2 kg/m2. A difficult airway was present in 76% of the patients and 54% of the patients had COVID-19 infection. In total, 63% of the patients were male and 37% were female. Using the Cormack-Lehane grade view: 20% had a grade 4 view, 10% had a grade 3 view, and 30% had a grade 2 view.
Intubation first-attempt success rate was 97%. Subgroup analysis of first-attempt intubation success using the AIROD to intubate in patients with a difficult airway was 96%.
The average intubation time in the patients that were timed was 15 seconds (33/54 patients were timed). Of the patients with a difficult airway, the average time to intubate was also 15 seconds.
A bronchoscopy performed on 17% of the patients just after intubation revealed no evidence of tracheobronchial trauma.
Discussion
The patients intubated with the AIROD in the ICU had a first-attempt success rate of 97%. The first-attempt success rate for endotracheal intubation of the critically ill has been reported at only 70% (6,7). This corresponds to an absolute risk reduction of 27% in failure to intubate patients during the first-attempt with the use of the AIROD during the intubation of patients in critical condition.
Even when compared to patients who were not critically ill and were intubated with a plastic bougie in the emergency department in the BEAM trial (1), the first-attempt success rate with the AIROD was 97% vs. 98. In those patients who were critically ill and also had a difficult airway, the first-attempt intubation success rate with the AIROD was at 97% vs. 96% in all patients (not just the critically ill) with a difficult airway.
In this study, the average time to intubation in all critically ill patients was 15 seconds using the AIROD. For those patients who were critically ill and had a difficult airway, the time to intubation was also 15 seconds. A previous publication on consecutive COVID-19 patients with ARDS intubated using the AIROD also had an intubation time of 15 seconds (2). In the BEAM trial, the median time to intubation using the plastic bougie in all types of patients intubated in the emergency department was 38 seconds (1). In all critically ill patients, the AIROD was 23 seconds faster. Intubation with the AIROD took 40% of the time in those patients who were critically ill, including those with a difficult airway, as opposed to the plastic bougie. The decrease in time securing the airway may have an impact on overall decompensation and possible outcomes of the disease process. Further studies between low intubation time and disease outcome remain an area to be studied in the future. The decrease in intubation time using the AIROD was not accompanied by adverse events such as cardiac arrest or tissue damage.
During multiple intubations, the AIROD was used to lift the epiglottis and move the oropharyngeal tissue that was obscuring the vocal cords out of the way, improving the view of the vocal cords and allowing for successful tracheal intubation. The AIROD was also able to move copious secretions blocking the view of the glottis in a few patients including those patients receiving chest compressions. Even during blind intubation, including one time when the light on the laryngoscope failed, the AIROD provided tactile sensation to the tracheal rings known as “tracheal clicks” that helped ensure correct tracheal placement of the endotracheal tube (2).
This study is limited by its small sample size and retrospective nature, and by that fact that not all intubations were timed because of the emergent nature of some of the intubations. The inventor of the AIROD did most of the intubations and others might not achieve equal results. A prospective trial on the timing of first-pass intubation success using the AIROD would be most useful to confirm the findings in this study.
In conclusion, the AIROD first-attempt intubation success rate was found to be similar to the rate for the traditional plastic bougie. Direct inspection of the oropharynx during intubation confirmed no significant trauma occurred during intubation.
Conflicts of Interest
Evan D. Schmitz, MD is the inventor of the AIROD and was the primary operator for most of the intubations mentioned in this study. No financial assistance was provided for this study. The AIROD instruments were donated to the hospital from AIRODMedical.com.
Acknowledgments
The author thanks H. Carole Schmitz, Carol Fountain and Abra Gibson for their editorial comments.
References
- Driver BE, Prekker ME, Klein LR, Reardon RF, Miner JR, Fagerstrom ET, Cleghorn MR, McGill JW, Cole JB. Effect of Use of a Bougie vs Endotracheal Tube and Stylet on First-Attempt Intubation Success Among Patients With Difficult Airways Undergoing Emergency Intubation: A Randomized Clinical Trial. JAMA. 2018 Jun 5;319(21):2179-2189. [CrossRef] [PubMed]
- Schmitz ED. Decreasing COVID-19 patient risk and improving operator safety with the AIROD during endotracheal intubation. J of Emergency Services. EMSAirway. 11/2020.
- Schmitz ED. AIROD Case Series: A new bougie for endotracheal intubation. J Emerg Trauma Care. 2020;5(2):20. [CrossRef]
- Schmitz ED. Single-use telescopic bougie: case series. Southwest J Pulm Crit Care. 2020;20(2):64-68. [CrossRef]
- Schmitz ED, Park K. Emergency intubation of a critically ill patient with a difficult airway and avoidance of cricothyrotomy using the AIROD. J of Emergency Services. EMSAirway. 01/2021. [CrossRef]
- Collins SR. Direct and indirect laryngoscopy: equipment and techniques. Respir Care. 2014 Jun;59(6):850-62; discussion 862-4. [CrossRef] [PubMed]
- Higgs A, McGrath BA, Goddard C, Rangasami J, Suntharalingam G, Gale R, Cook TM; Difficult Airway Society; Intensive Care Society; Faculty of Intensive Care Medicine; Royal College of Anaesthetists. Guidelines for the management of tracheal intubation in critically ill adults. Br J Anaesth. 2018 Feb;120(2):323-352. [CrossRef] [PubMed]
Cite as: Schmitz ED, Park K. First-Attempt Endotracheal Intubation Success Rate Using A Telescoping Steel Bougie. Southwest J Pulm Crit Care. 2021;22(1):36-40. doi: https://doi.org/10.13175/swjpcc004-21 PDF
Further COVID-19 Infection Control and Management Recommendations for the ICU
Robert A. Raschke MD
HonorHealth Osborne Medical Center
Scottsdale, AZ USA
An ad hoc committee of intensivists from the Phoenix area has been meeting via Zoom. They are sharing some of their thoughts and recommendations. Like the previous ICU recommendations published in SWJPCC (1), these are not necessarily evidence-based but based on recent experience and published experience with previous coronavirus outbreaks such as SARS. They are meant to supplement CDC recommendations, not to conflict or restate them.
Infection control outside the rooms of suspected/confirmed COVID-19 patients.
- All healthcare workers should be allowed to exercise droplet precautions at all times while at work.
- All staff should wear a single surgical mask per day to see all non-COVID patients and for rounds. The mask mitigates droplet spread bidirectionally between patients and HCWs and also helps prevent inadvertent touching of the nose and mouth.
- Treat all code patients with airborne / standard / contact precautions
- Use MDIs in preference to SVNs (as long as MDIs hold out)
- Reduce unnecessary staff and visitor traffic in all patient rooms. Avoid duplication of effort, repeated chest examinations with a stethoscope, in the same day by various doctors and nurses, are unlikely to benefit the care of most patients. Don’t enter the patient’s room without a specific purpose and try to perform multiple required tasks with each room entry.
- Hand washing before/after: doorknobs, eating, using a computer, phones, googles.
- Phones – use your own cellphone rather than shared landlines. Use speaker phone so you don’t have to touch your face.
- Consolidate computer use temporally and geographically. Clean your entire workstation (keyboard, mouse, surrounding desktop) before and after each use.
- Keep track of and clean any object on your person that might be contaminated with fomites. This includes any medical instruments that you touch will your gloved hands while seeing patients (stethoscope, pen light, googles, etc). Leave these at work.
- When walking down hallways, don’t touch things.
Patients under investigation or with known COVID-19.
- Avoid use of high-flow nasal cannula (HFNC) or BiPAP. This in opposition to surviving sepsis campaign recommendations, but data from SARS-CoV-1 show that non-invasive ventilation was associated with increased risk of infection of health care workers (2).
- Use metered dose inhalers (MDIs) instead of small volume nebulizers (SVNs).
- Use N95 or PAPR during aerosol-producing procedures such as obtaining nasopharyngeal swab for SARS-CoV-2 RT-PCR, HFNC, BiPAP, bronchoscopy, intubation, breaking ventilator circuit for any reason, extubation, tracheostomy.
- Consider early intubation. Prepare the bag mask with a high-efficiency particulate air (HEPA) filter and attempt rapid sequence intubation with fiberoptic laryngoscope.
- If available, powered air-purifying respirators (PAPR) using P100 HEPA filters (filter >99.97% of 0.3 um particles) should be considered over N-95 (filter 95% of 5 um particles) masks during this high risk procedure based on prior reports of SARS CoV-1 transmission to health care workers (HCW) wearing N95 masks PAPR protects the entire head and neck of the HCW, but requires additional training on donning/duffing.
- If unable to wear PAPR, we recommend N95 masks, gowns and gloves, with googles instead of open face shielded masks. Aerosolized particles are more likely to pass around shields into eyes during these high-risk procedures. Also recommend hats and foot protection.
- The smallest number of personnel required to safely perform the intubation should be present in the room. Fiberoptic laryngoscopy may be preferred over direct laryngoscopy to reduce exposure to aerosolized particles.
- Once intubated:
- Be sure all connections in the ventilator circuit are tight and do not break the circuit casually.
- Place HEPA filter on exhalational limb of ventilator.
- Obtain bronchial secretions using closed-circuit suction device
Code blue patients.
- Use the same precautions as for COVID-19 patients in all patients for whom a code is called.
- We recommend aerosol, contact and standard precautions and eye protection for all code team members for all codes - regardless of whether COVID-19 is suspected. There is no time in a code to determine the likelihood the patient has COVID-19, and bag-masking and intubation will aerosolize the patient’s respiratory secretions.
- A HEPA filter should be placed between the patient and the bag mask to reduce aerosolization of viral particles into the atmosphere.
Diagnosis of COVID-19.
The sensitivity of RT-PCR for COVID-19 is currently uncertain, but preliminary data suggests it may only be in the range of 70% for nasopharyngeal swabs and respiratory secretions. Bronchoscopy with bronchoalveolar lavage may have sensitivity about 90%, but likely poses a risk to HCWs. This poses difficulty in ruling-out COVID-19. Bayesian logic dictates that the pre-test probability of disease influences interpretation of test results.
During active epidemic in Wuhan, the prevalence of COVID-19 among patients admitted with suspicion of having viral pneumonia was 60% (3). Assuming sensitivities by RT-PCR for NP swab of 70%, respiratory secretions 70%, and BAL 90%, and specificity >95%, the false negative rate for a single NP swab used to rule out COVID-19 is 31.6% - that is, 31.6% of patients taken out of isolation based on the negative NP swab result would actually be infected with COVID-19. If a second test, for instance respiratory secretions or another NP swab were performed on all patients whose first test was negative, the false negative rate for the series of tests is 8.8% - likely still not good enough to rule a patient out with confidence. If the second test was a BAL, the false negative rate for the series is 3.5%.
In patients with high pre-test probability of COVID-19, a negative NP swab PCR cannot be safely relied-upon to rule out COVID-19. We recommend bronchial secretions be sent for PCR (in addition to NP swab) in all suspected patients who are intubated. A negative CT scan reduces the probability that a hospitalized patient has COVID-19, but will uncommonly be “negative” in hospitalized patients in whom the diagnosis is considered.
Infection control at home during a surge.
- Clothes: don’t wear jewelry/watches. Wear hospital-laundered scrubs at work, or take off your work clothes when you get home and throw them in wash machine. Leave your work shoes in your car.
- Work equipment: Leave stethoscope, pen, googles and other work-related equipment in a locker at work. Wash your hands and ID badge just before getting in your car to leave the hospital. Leave your ID badge in your car while away from work. Don’t bring your personal computer into work unless absolutely necessary.
- Food: Put a Purell dispenser in front of the refrigerator. Stay out of the kitchen. If have your food prepared for you. Eat on paper plates and then throw them out yourself.
- Use separate bathroom and sleeping quarters if available.
References
- Raschke RA, Till SL, Luedy HW. COVID-19 prevention and control recommendations for the ICU. Southwest J Pulm Crit Care. 2020;20(3):95-7. [CrossRef]
- Cheng VC, Chan JF, To KK, Yuen KY. Clinical management and infection control of SARS: lessons learned. Antiviral Res. 2013 Nov;100(2):407-19. [CrossRef] [PubMed]
- Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020 Mar 11. [Epub ahead of print] [CrossRef] [PubMed]
Cite as: Raschke RA. Further COVID-19 infection control and management recommendations for the ICU. Southwest J Pulm Crit Care. 2020;20(3):100-2. doi: https://doi.org/10.13175/swjpcc020-20 PDF
COVID-19 Prevention and Control Recommendations for the ICU
Robert A. Raschke, MD1
Sandra L. Till, DO2
Henry W. Luedy, MD1
1HonorHealth Scottsdale Osborn Medical Center
2Banner University Medical Center-Phoenix
Phoenix, AZ USA
Editor’s Note: We are planning on presenting a case of COVID-19 from Osborn as our case of the month for April. The authors felt we should publish preliminary recommendations now early in the COVID-19 pandemic. The recommendations are not necessarily evidence-based but are based on recent experience and published experience with previous coronavirus outbreaks such as SARS.
Background:
- COVID-19 is likely somewhat more infectious than influenza (R value in 2-3 range), and can be transmitted by asymptomatic/presymptomatic persons.
- COVID-19 is already in the community and likely being spread from person to person, Therefore, not all COVID-19 patients will present with a recognized exposure history. Furthermore, fever and pneumonia are not universally present.
- As of this writing, >3,300 healthcare workers have been confirmed infected globally with 6 deaths.
- Testing is currently extremely limited in the US with only a minority of potential cases having been tested at this time. This will likely improve over the next few days to weeks. True incidence likely much higher than reported rates of “confirmed COVID-19”.
- About 15% of patients with confirmed COVID-19 have severe disease and 5% require ICU level care. Mortality rates of approximately 1-2% may be confounded by undertesting, but is currently more than 10 times higher than that of influenza (approx. mortality of 0.05-0.1%) (1).
Infectious disease control issues in the ICU. We recommend droplet, contact and standard precautions when seeing any patient presenting with symptoms of acute upper or lower respiratory tract infection of unknown etiology, regardless whether they meet full CDC criteria for COVID-19 testing.
Studies during the SARS epidemic showed that intubation, bag-mask ventilation, non-invasive ventilation and tracheostomy procedures were all associated with increased transmission of SARS to healthcare workers (2).
Code arrest. We recommend aerosol, contact and standard precautions and eye protection for all code team members for all codes - regardless of whether COVID-19 is suspected. There is no time in a code to determine the likelihood of the patient having COVID-19, and bag-masking and intubation will aerosolize the patient’s respiratory secretions. A HEPA filter should be placed between the patient and the bag mask to reduce aerosolization of viral particles into the atmosphere.
Elective or semi-elective endotracheal intubation of patients with possible or confirmed COVID-19. If available, powered air-purifying respirators (PAPR) using P100 HEPA filters (filter >99.97% of 0.3 um particles) should be considered over N-95 (filter 95% of 5 um particles) masks during this high-risk procedure based on prior reports of SARS CoV-1 transmission to healthcare workers wearing N95 masks (3). PAPR protects the entire head and neck of the HCW, but requires additional training on donning/duffing.
If unable to wear PAPR, we recommend N95 masks, gowns and gloves, with googles instead of open face shielded masks. Aerosolized particles are more likely to pass around shields into eyes during these high-risk procedures. We also recommend hats and foot protection.
The smallest number of personal required to safely perform the intubation should be present in the room. Fiberoptic laryngoscopy may be preferred over direct laryngoscopy to reduce exposure to aerosolized particles. Once intubated, a HEPA filter should be placed on the exhalational limb of the ventilator.
Non-invasive ventilation and high-flow nasal oxygen. Non-invasive ventilation and high-flow nasal oxygen likely increase the infectivity of COVID-19 by aerosolizing the patient’s respiratory secretions. Consideration should be given to early intubation in patients under investigation or confirmed for COVID-19 (4).
Visitors should not be allowed inside the rooms of such patients except under extreme circumstances and with one-on-one supervision to assure proper use of PPE and handwashing.
Furthermore, we think it is prudent to employ PPE in the rooms of all patients receiving these therapies, since patients with COVID-19 may present atypically (as in the Osborn case). The doors of their rooms should be kept closed, unnecessary traffic in the room reduced, and droplet contact and standard PPE considered, even in patients in whom COVID-19 is not suspected. (This approach has the downside of consuming PPE that might later be in short supply, but has the upside of preserving healthcare workers who also might later be in short supply).
References
- Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020 Feb 24. [Epub ahead of print]. [CrossRef] [PubMed]
- Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One. 2012;7(4):e35797. [CrossRef] [PubMed]
- Cheng VC, Chan JF, To KK, Yuen KY. Clinical management and infection control of SARS: lessons learned. Antiviral Res. 2013 Nov;100(2):407-19. [CrossRef] [PubMed]
- Zuo MZ, Huang YG, Ma WH, Xue ZG, Zhang JQ, Gong YH, Che L; Chinese Society of Anesthesiology Task Force on Airway Management. Expert recommendations for tracheal intubation in critically ill patients with noval [sic] coronavirus disease 2019. Chin Med Sci J. 2020 Feb 27. [CrossRef] [PubMed]
Cite as: Raschke RA, Till SL, Luedy HW. COVID-19 prevention and control recommendations for the ICU. Southwest J Pulm Crit Care. 2020;20(3):95-7. doi: https://doi.org/10.13175/swjpcc017-20 PDF
Airway Registry and Training Curriculum Improve Intubation Outcomes in the Intensive Care Unit
Joshua Malo MD1
Cameron Hypes MD2
Bhupinder Natt MBBS1
Elaine Cristan MD1
Jeremy Greenberg MD1
Katelin Morrissette MD1
Linda Snyder MD1
James Knepler MD1
John Sakles MD2
Kenneth Knox MD1
Jarrod Mosier MD2
1 Department of Medicine, University of Arizona College of Medicine, Tucson, AZ
2 Department of Emergency Medicine, University of Arizona College of Medicine, Tucson, AZ
Abstract
Background: Intubation in critically ill patients remains a highly morbid procedure, and the optimal approach is unclear. We sought to improve the safety of intubation by implementing a simulation curriculum and monitoring performance with an airway registry.
Methods and Methods: This is a prospective, single-center observational study of all intubations performed by the medical intensive care unit (ICU) team over a five-year period. All fellows take part in a simulation curriculum to improve airway management performance and minimize complications. An airway registry form is completed immediately after each intubation to capture relevant patient, operator, and procedural data.
Results: Over a five-year period, the medical ICU team performed 1411 intubations. From Year 1 to Year 5, there were significant increases in first-attempt success (72.6 vs. 88.0%, p<0.001), use of video laryngoscopy (72.3 vs. 93.5%, p<0.001), and use of neuromuscular blocking agents (73.5 vs. 88.4%, p<0.001). There were concurrent decreases in rates of desaturation (25.6 vs. 17.1%, p=0.01) and esophageal intubations (5 vs. 1%, p=0.009). Low rates of hypotension (8.3%) and cardiac arrest (0.6%) were also observed.
Conclusions: The safety of intubation in critically ill patients can be markedly improved through joint implementation of an airway registry and simulation curriculum.
Introduction
Airway management is one of the highest risk procedures that can be performed in the intensive care unit (ICU). Despite technologic advances in methods for performing intubation, recent studies continue to report frequent adverse events associated with tracheal intubation, and complications occur in up to 40% of procedures (1-3). Even in the absence of anatomic predictors of a difficult airway, critically ill patients are particularly vulnerable to desaturation, hemodynamic instability, and cardiac arrest due to poor physiologic reserve (4, 5). Repeated or prolonged intubation attempts exhaust any physiologic reserve these patients may have, leading to more frequent adverse outcomes (6). Thus, maximizing first attempt success without an adverse event is the goal for airway management in this high-risk population (7, 8).
Much of the clinical practice regarding airway management in the ICU has been extrapolated from studies performed during elective intubations in the operating room (4). In recent years, there has been a greater focus on management strategies and outcomes in critically ill patients in the emergency department (ED) and ICU (3, 9, 10). In 2012, we initiated a comprehensive airway management quality improvement program to measure variables related to airway management in the ICU and identify targeted opportunities for intervention to improve outcomes (11). We first established a prospectively collected registry of all intubations performed in the medical ICU. After evaluation of the first year of data, a simulation-based curriculum for the pulmonary and critical care fellows was developed with a focus on identifying high-risk features, minimizing adverse events, and maximizing first-attempt success. Lastly, research questions were evaluated periodically to identify targeted opportunities for improvement. This paper will describe the outcomes after the first 5 years of our program.
Materials and Methods
This is a prospective single-center observational study of all intubations performed in the medical ICU from January 1, 2012 to December 31, 2016. The study has been granted an exemption from full review and is approved by the University of Arizona Institutional Review Board. The primary outcome of interest was first attempt success, while secondary outcomes included adverse events, drug and device selection, and method of preoxygenation.
This study took place at a large academic medical center with 20+ bed medical ICU. A medical ICU team consisting of an attending intensivist, a pulmonary/critical care or emergency medicine/critical care fellow, and internal medicine, emergency medicine, and occasionally family medicine residents assumes primary management of all patients admitted to the medical ICU service. All patients admitted to the ICU undergoing airway management by the medical ICU team were included in the study.
We have maintained a continuous quality improvement (CQI) database for all episodes of airway management performed by our medical intensive care teams since January 1, 2012. After each intubation, the operators record data pertinent to the procedure, including difficult airway characteristics, drug and device selection, and number of attempts, using a standardized form. The study primary investigator crosschecked a report generated by the electronic health record against the database to ensure forms were completed for all intubations. Forms were reviewed for completeness and internal consistency. Inconsistent or absent data were resolved by interview of the operator. The variables captured in the form have been previously described (11) and are adjusted occasionally to evaluate new variables of interest.
Our Pulmonary and Critical Care Medicine (PCCM) and Critical Care Medicine (CCM) fellowship programs implemented an 11-month, simulation-based airway management curriculum beginning on July 1, 2013. The curriculum is designed to improve situational awareness in the peri-intubation period as well as to emphasize techniques that will optimize chances of first-attempt success while minimizing complications. The general outline for the simulations has been previously described in detail (11). Briefly, the curriculum involves clinical scenarios of varying and generally progressive complexity, each of which is meant to emphasize certain aspects of airway management. As trainees progress, the curriculum emphasizes the identification and mitigation of factors that may decrease the likelihood of first-attempt success and increase the likelihood of complications. The annual fellowship complement includes 14 Pulmonary and Critical Care Medicine fellows and 2 Critical Care Medicine fellows. All fellows participate in the curriculum, which is updated to include recent advances in airway management from the literature and analysis of our own airway registry. A debriefing session following each simulation is used to emphasize specific learning points for the approach to airway management.
Statistical Analysis
Descriptive statistics were calculated for measured variables as means and standard deviations, medians and interquartile ranges (IQR), or proportions as appropriate. Categorical variables were compared using Fisher’s exact test. Comparisons between Year 1 and Year 5 were performed using the Two-Sample Test of Proportions. Categorical variables with multiple groups, such as preoxygenation, Operator PGY, and Device were evaluated with the test for trend using the likelihood ratio test. All statistical analyses were performed with Stata Version 14 (StataCorp, College Station, TX).
Results
During the 60-month study period, there were 1411 intubations performed. The patient and operator characteristics are shown in Table 1 and Table 2, respectively.
Table 1. Patient characteristics.
aSome DACs added over time. Limited mouth opening and secretions added after the first 8 months of data collection.
Table 2. First Operator Characteristics.
During the course of the study, there was no significant change in patient age or gender, the presence of difficult airway characteristics, starting saturation, or percentage of patients intubated after failing noninvasive positive pressure ventilation (NIPPV). There was a trend for decreased intubations resulting from failed extubation. The overall characteristics of intubation attempts are described in Table 3.
Table 3. Intubation characteristics.
There was a significant increase in the number of intubations performed by PCCM operators after the first year of the study (Year 1-5 difference +19%, p<0.001) accompanied by a decrease in intubations performed by internal medicine (Year 1-5 difference -9%, p=0.006) and emergency medicine residents (Year 1-5 difference -10%, p=0.003). Likewise, there was an increase in intubations performed by PGY 4 (Year 1-5 difference +13%, p=0.002) and PGY 6 (Year 1-5 difference +11%, p<0.001) operators with a concurrent decrease in those performed by PGY 2 (Year 1-5 difference -16%, p<0.001) and PGY 3 (Year 1-5 difference -8%, p=0.004) operators.
First-attempt success (FAS) occurred in 80.7% of intubations performed during the study period. The FAS rate increased linearly throughout the study period, with FAS of 72.6% in the first year and 88.0 % in the final year when looking at all operators (p<0.001) (Table 4, Figure 1, next page).
There was a significant increase in the number of intubations performed by PCCM operators after the first year of the study (Year 1-5 difference +19%, p<0.001) accompanied by a decrease in intubations performed by internal medicine (Year 1-5 difference -9%, p=0.006) and emergency medicine residents (Year 1-5 difference -10%, p=0.003). Likewise, there was an increase in intubations performed by PGY 4 (Year 1-5 difference +13%, p=0.002) and PGY 6 (Year 1-5 difference +11%, p<0.001) operators with a concurrent decrease in those performed by PGY 2 (Year 1-5 difference -16%, p<0.001) and PGY 3 (Year 1-5 difference -8%, p=0.004) operators.
First-attempt success (FAS) occurred in 80.7% of intubations performed during the study period. The FAS rate increased linearly throughout the study period, with FAS of 72.6% in the first year and 88.0 % in the final year when looking at all operators (p<0.001) (Table 4, Figure 1).
Table 4. Outcomes.
Figure 1. First-attempt success and complications over time.
For patients intubated by fellows only, FAS increased from 77% to 92% over the 5-year period (p<0.001).
During the entire study period, at least one complication occurred in 28.7% of intubations. The incidence of complications decreased throughout the first 48 months but increased slightly in the final 12 months of the study, driven primarily by an increase in hypotension (Table 4, Figure 2).
Figure 2. Neuromuscular blocking agent (NMBA) use, video laryngoscopy (VL) use, and occurrence of esophageal intubations, desaturation, and hypotension over time.
There was a decrease in the rate of desaturation from the first year to the final year of the study (25.6% to 17.1%, p=0.01). Esophageal intubations also decreased significantly over this time (5% to 1%, p=0.009). Hypotension and cardiac arrest occurred in 8.3% and 0.6% of intubations, respectively, during the entire study period.
There was a trend towards decreased use of midazolam and propofol throughout the study period while the use of etomidate tended to increase, although these changes were not significant (Table 3). A neuromuscular blocking agent (NMBA) was used in 77.4% of intubations during the study period, increasing from the first year to the final year (73.5% to 88.4%, p<0.001), driven primarily by an increase in the use of rocuronium.
There was a significant transition from the use of direct laryngoscopy (DL) to video laryngoscopy (VL) over the course of the study (p<0.001). DL was chosen as the first approach in 22.0% of intubations in the first year and only 2.9% in the final year. Conversely, the use any form of VL on the first attempt increased from 72.3% of intubations in the first year to 93.5% in the final year. Flexible fiber optic intubation was used infrequently during the entire study period, being the first device used in 4.3% of intubations.
Various methods of preoxygenation were used throughout the study period with some form of preoxygenation occurring in 97.5% of intubations. From the first year to the final year of the study, the use of bag-valve-mask (BVM) ventilation tended to decrease (30% to 12.2%) with a concurrent trend in increasing use of NIPPV for preoxygenation (19.4% to 29.7%).
Discussion
Our experience demonstrates that utilization of a comprehensive approach to airway management including an ongoing simulation-based training curriculum and CQI database is associated with an improved first-attempt success rate for the intubation of critically ill patients. This was accompanied by changes in approach to airway management, with increased use of VL and NMBA on the first attempt, as well as an increased proportion of airways being managed by more experienced operators.
While some of the observed improvement in FAS may be attributed to more experienced operators managing the airway on the first attempt, the sharp increase in fellow-level operators after implementation of the curriculum may point to increased fellow confidence or increased recognition of high-risk patients. Furthermore, as adjunctive strategies such as ramp positioning (12-14) and apneic oxygenation (15, 16) have become increasingly recognized as potentially beneficial, a continuous training curriculum provides opportunities for evaluating trainees’ knowledge of these techniques and reinforcing their incorporation into airway management.
We have previously reported on the impact of a simulation-based curriculum on operator confidence, first-attempt success, and procedural complications (11). The combination of this curriculum with a CQI database has a marked effect on the approach to management of these patients. Strategies presented and employed in the curriculum have been informed by previous reports from our database. For example, after demonstrating improved first-attempt success with the use of neuromuscular blockade (17) and video laryngoscopy (18), the didactic portion of our curriculum incorporated these findings, which were rapidly used with increasing frequency in our intensive care unit. The integration of the curriculum and CQI database facilitates adoption of best practices, leading to a significant improvement of first-attempt success rate over a relatively short time span. The continued improvement over the course of five years is likely due to the incorporation of the practices above during this time.
Tools traditionally used for predicting difficulty of airway management have focused primarily on characteristics of an anatomically difficult intubation (19, 20). More recently, there has been an expanded focus on physiologic characteristics that may lead to complications and decreased success of intubation. However, currently available instruments for ICU patients, such as the MACOCHA score, continue to put heavy emphasis on anatomic factors and are not validated for the use of VL (21). We have found difficult airway characteristics associated with decreased FAS in the setting of VL and have focused efforts at minimizing their impact (22). In our population, we noted a consistent improvement in Cormack-Lehane grade and percentage of glottic opening (POGO) score, despite a high prevalence of anatomic difficult airway characteristics. We have also noted a significant decrease in desaturations, esophageal intubations, and a trend towards decreased overall complications. In comparison to other studies of intubation complications in critically ill patients, we found generally lower rates of esophageal intubation (1, 2, 6) and similar (10) or lower rates of desaturation (1, 2) (Table 5).
Table 5. Incidence of complications in the published literature.
Our rate of hypotension is fairly low relative to several other studies (2, 10, 23) despite a fairly inclusive definition (administration of fluid or phenylephrine bolus, initiation or increase of vasopressor infusion). Moreover, cardiac arrest was extremely uncommon in our population, occurring in 0.57% of intubations.
Data regarding optimal approach have been controversial, and randomized trial results do not always coincide with observational studies. Although randomized controlled trials have called into question the benefit of VL (24-27), there are several important limitations to each of these studies to consider when interpreting the comparison between DL and VL. In some, patients were excluded either directly (25) or indirectly (24, 26) for a history of a difficult intubation or anticipated difficult intubation. The use of endotracheal tubes without a stylet may have also influenced outcomes (27).
Our experience is a pragmatic example of the effect of device selection on first attempt success in that we have >1400 patients, operators with varying experience, and have no patients excluded because of potential difficulty. Thus, while randomized trials may be ideal, they are costly and time-consuming and may delay identification and implementation of best practices. The FAS rate in our cohort in its first year was similar to that observed in several of these trials but improved substantially over the 5-year period. One reason for the improved FAS in our study may be the continuous simulation-based training with a focus on video laryngoscopy as the first technique of choice for the majority of airways. In comparison to other widely cited studies of airway management in critically ill patients (1, 21), our cohort demonstrated a very low incidence of difficult airways, only 2% in the final year, despite a similar presence of difficult airway characteristics. This may be an effect of the training program suggesting that perhaps airway training with a global view of airway management focusing on increasing FAS and reducing complications is even more important than equipment considerations.
Our study has several limitations. The single-center, observational nature of this study makes it at risk of bias despite attempts to identify and control for factors that may influence the results. Data forms were completed by the operator, introducing potential for reporting bias, although attempts to minimize this were made by intermittent correlation with the medical record. Although FAS is an accepted outcome for studies evaluating intubation strategies, data regarding mortality or late morbidity were not captured. The increase in hemodynamic complications in the final year is of interest, but data regarding this complication and its consequences were limited and should be a focus of future research. Despite these limitations, the consistent improvement in FAS and low incidence of difficult airways in the final year of the study warrant serious consideration of these findings.
Conclusion
We have found that a comprehensive strategy employing a simulation-based curriculum and continuous quality improvement database was associated with significant improvements in first-attempt success at intubation in critically ill patients throughout the 5-year study period. We suggest that wider adoption of this practice could vastly improve the safety of intubation in this high-risk patient population.
References
- Griesdale DE, Bosma TL, Kurth T, Isac G, Chittock DR. Complications of endotracheal intubation in the critically ill. Intensive Care Med. 2008;34(10):1835-42. [CrossRef] [PubMed]
- Jaber S, Amraoui J, Lefrant JY, Arich C, Cohendy R, Landreau L, et al. Clinical practice and risk factors for immediate complications of endotracheal intubation in the intensive care unit: a prospective, multiple-center study. Crit Care Med. 2006;34(9):2355-61. [CrossRef] [PubMed]
- Lapinsky SE. Endotracheal intubation in the ICU. Crit Care. 2015;19:258. [CrossRef] [PubMed]
- Mort TC. The incidence and risk factors for cardiac arrest during emergency tracheal intubation: a justification for incorporating the ASA Guidelines in the remote location. J Clin Anesth. 2004;16(7):508-16. [CrossRef] [PubMed]
- Mosier JM, Joshi R, Hypes C, Pacheco G, Valenzuela T, Sakles JC. The Physiologically Difficult Airway. West J Emerg Med. 2015;16(7):1109-17. [CrossRef] [PubMed]
- Mort TC. Emergency tracheal intubation: complications associated with repeated laryngoscopic attempts. Anesth Analg. 2004;99(2):607-13, table of contents. [CrossRef] [PubMed]
- Hypes C, Sakles J, Joshi R, Greenberg J, Natt B, Malo J, et al. Failure to achieve first attempt success at intubation using video laryngoscopy is associated with increased complications. Intern Emerg Med. 2017 Dec;12(8):1235-43. [CrossRef] [PubMed]
- Park L, Zeng I, Brainard A. Systematic review and meta-analysis of first-pass success rates in emergency department intubation: Creating a benchmark for emergency airway care. Emerg Med Australas. 2017;29(1):40-7. [CrossRef] [PubMed]
- Simpson GD, Ross MJ, McKeown DW, Ray DC. Tracheal intubation in the critically ill: a multi-centre national study of practice and complications. Br J Anaesth. 2012;108(5):792-9. [CrossRef] [PubMed]
- Smischney NJ, Seisa MO, Heise KJ, Busack KD, Loftsgard TO, Schroeder DR, et al. Practice of Intubation of the Critically Ill at Mayo Clinic. J Intensive Care Med. 2017:885066617691495. [CrossRef] [PubMed]
- Mosier JM, Malo J, Sakles JC, Hypes CD, Natt B, Snyder L, et al. The impact of a comprehensive airway management training program for pulmonary and critical care medicine fellows. A three-year experience. Ann Am Thorac Soc. 2015;12(4):539-48. [CrossRef] [PubMed]
- Khandelwal N, Khorsand S, Mitchell SH, Joffe AM. Head-Elevated Patient Positioning Decreases Complications of Emergent Tracheal Intubation in the Ward and Intensive Care Unit. Anesth Analg. 2016;122(4):1101-7. [CrossRef] [PubMed]
- Ramkumar V, Umesh G, Philip FA. Preoxygenation with 20 masculine head-up tilt provides longer duration of non-hypoxic apnea than conventional preoxygenation in non-obese healthy adults. J Anesth. 2011;25(2):189-94. [CrossRef] [PubMed]
- Turner JS, Ellender TJ, Okonkwo ER, Stepsis TM, Stevens AC, Sembroski EG, et al. Feasibility of upright patient positioning and intubation success rates at two academic emergency departments. Am J Emerg Med. 2017. [CrossRef] [PubMed]
- Mosier JM, Hypes CD, Sakles JC. Understanding preoxygenation and apneic oxygenation during intubation in the critically ill. Intensive Care Med. 2017;43(2):226-8. [CrossRef] [PubMed]
- Sakles JC, Mosier JM, Patanwala AE, Arcaris B, Dicken JM. First Pass Success Without Hypoxemia Is Increased With the Use of Apneic Oxygenation During Rapid Sequence Intubation in the Emergency Department. Acad Emerg Med. 2016;23(6):703-10. [CrossRef] [PubMed]
- Mosier JM, Sakles JC, Stolz U, Hypes CD, Chopra H, Malo J, et al. Neuromuscular blockade improves first-attempt success for intubation in the intensive care unit. A propensity matched analysis. Ann Am Thorac Soc. 2015;12(5):734-41. [CrossRef] [PubMed]
- Hypes CD, Stolz U, Sakles JC, Joshi RR, Natt B, Malo J, et al. Video Laryngoscopy Improves Odds of first-attempt success at intubation in the intensive care unit. A propensity-matched analysis. Ann Am Thorac Soc. 2016;13(3):382-90. [CrossRef] [PubMed]
- Mallampati SR, Gatt SP, Gugino LD, Desai SP, Waraksa B, Freiberger D, et al. A clinical sign to predict difficult tracheal intubation: a prospective study. Can Anaesth Soc J. 1985;32(4):429-34. [CrossRef] [PubMed]
- Wilson ME, Spiegelhalter D, Robertson JA, Lesser P. Predicting difficult intubation. Br J Anaesth. 1988;61(2):211-6. [CrossRef] [PubMed]
- De Jong A, Molinari N, Terzi N, Mongardon N, Arnal JM, Guitton C, et al. Early identification of patients at risk for difficult intubation in the intensive care unit: development and validation of the MACOCHA score in a multicenter cohort study. Am J Respir Crit Care Med. 2013;187(8):832-9. [CrossRef] [PubMed]
- Joshi R, Hypes CD, Greenberg J, Snyder L, Malo J, Bloom JW, et al. Difficult airway characteristics associated with first-attempt failure at intubation using video laryngoscopy in the intensive care unit. Ann Am Thorac Soc. 2017;14(3):368-75. [CrossRef] [PubMed]
- Perbet S, De Jong A, Delmas J, Futier E, Pereira B, Jaber S, et al. Incidence of and risk factors for severe cardiovascular collapse after endotracheal intubation in the ICU: a multicenter observational study. Crit Care. 2015;19:257. [CrossRef] [PubMed]
- Driver BE, Prekker ME, Moore JC, Schick AL, Reardon RF, Miner JR. Direct versus video laryngoscopy using the c-mac for tracheal intubation in the emergency department, a randomized controlled trial. Acad Emerg Med. 2016;23(4):433-9. [CrossRef] [PubMed]
- Griesdale DE, Chau A, Isac G, Ayas N, Foster D, Irwin C, et al. Video-laryngoscopy versus direct laryngoscopy in critically ill patients: a pilot randomized trial. Can J Anaesth. 2012;59(11):1032-9. [CrossRef] [PubMed]
- Janz DR, Semler MW, Lentz RJ, Matthews DT, Assad TR, Norman BC, et al. Randomized trial of video laryngoscopy for endotracheal intubation of critically ill adults. Crit Care Med. 2016;44(11):1980-7. [CrossRef] [PubMed]
- Lascarrou JB, Boisrame-Helms J, Bailly A, Le Thuaut A, Kamel T, Mercier E, et al. Video laryngoscopy vs direct laryngoscopy on successful first-pass orotracheal intubation among ICU patients: A randomized clinical trial. JAMA. 2017;317(5):483-93. [CrossRef] [PubMed]
Cite as: Malo J, Hypes C, Natt B, Cristan E, Greenberg J, Morrissette K, Snyder L, Knepler J, Sakles J, Knox K, Mosier J. Airway registry and training curriculum improve intubation outcomes in the intensive care unit. Southwest J Pulm Crit Care. 2018;16(4):212-23. doi: https://doi.org/10.13175/swjpcc037-18 PDF
Telemedicine Using Stationary Hard-Wire Audiovisual Equipment or Robotic Systems in Critical Care: A Brief Review
Nidhi S. Nikhanj, MD1,2
Robert A. Raschke, MD1,2
Robert Groves, MD1,2
Rodrigo Cavallazzi, MD3
Ken S. Ramos, MD1
1Arizona College of Medicine-Phoenix
Phoenix, AZ USA
2Banner University Medical Center-Phoenix
Phoenix, AZ USA
3University of Louisville School of Medicine
Louisville, KY USA
A shortage of critical care physicians in the United States has been widely recognized and reported (1). Most intensive care units (ICUs) do no not have a formally-trained intensivist in their staff despite compelling evidence that high-intensity intensivist staffing leads to better patient outcomes (1,2). Critical care telemedicine is one potential solution that has expanded rapidly since its inception in 2000 (3). In its simplest form, telemedicine leverages audiovisual technology and the electronic medical record to provide remote two-way communication between a physician and a patient. Current telemedicine models differ by the type of hardware facilitating remote audiovisual interaction, the location of the provider, and the type of patient-care service provided. We collectively have experience with several of these models and feel that future telemedicine programs will likely integrate the most advantageous aspects of each with an increasing role for telemedicine robotics.
The dominant current model for providing critical care telemedicine in large healthcare systems utilizes stationary hard-wired audiovisual equipment linking each ICU room to a centralized control location (4). Typically, this control center provides surveillance of a large number of patients using computerized decision support software linked to the EMR – a single physician can cover approximately 100 patients with the appropriate support infrastructure. This model also provides the ability to remotely “round” on ICU patients and to quickly respond to questions posed by nursing or medical emergencies across a broad geographic range. This approach requires a high up-front capital cost approximated at 50-100K per hospital bed covered (5).
Data supporting the benefit of this model of ICU telemedicine has been mixed, but several considerations are important in appraising the literature. A double-blinded RCT for ICU telemedicine intervention is not feasible. Heterogeneity in clinical workflows and staffing models across the country should be considered when assessing the internal validity and generalizability of published studies. For instance, Thomas and colleagues concluded that a telemedicine ICU service resulted in no overall improvement in mortality or length of stay (LOS) (6), but the tele-intensivists in the study were limited by only being allowed to intervene in the care of less than a third of the study patients. Nassar and colleagues published a negative study in a healthcare system in which resident and attending physicians were already available in-house for overnight patient care (7). Likely, the potential benefit of a telemedicine program can be optimized in a clinical setting in which other physicians are not physically available at the locality 24/7 and telemedicine intensivists are allowed to appropriately intervene when indicated.
Despite these difficulties, there is a growing body of evidence that suggests a centralized telemedicine ICU model is effective in a number of areas including: improvements in compliance with evidence based practices (8, 9), increased job satisfaction of ICU nurses (10) and reduction in the cost of care of the sickest patients in the institutional setting (11). Other studies suggest that a telemedicine platform can reduce mortality and LOS by allowing for earlier intensivist involvement, promoting adherence to best practices, shortening alarm response times and improving access to ICU performance data that can be used to drive continuous quality improvement (12,13).
Commercially available telemedicine robots are mobile units equipped with a digital camera, microphone and monitor screen that provides two-way audiovisual communications with the control center via a wireless internet connection (14). Telemedicine robots can be operated with much lower initial capital costs - for instance, an ICU group at a large acute care hospital might provide coverage at a rural healthcare setting using a single robot (15). Such a system can be used for daily rounding or for reactive consultation. Like hard-wired systems, telemedicine robots have been shown to be well accepted by providers (16) and patients (17), and their use has been associated with reduced ICU length-of-stay and decreased delay in response to clinical events by the physician (18).
Telemedicine robotic systems have several disadvantages – they do not provide large-scale EMR surveillance leveraging computerized decision support logic and they are significantly less efficient than hard-wired systems for high-volume patient care since they have to physically relocate from patient room to patient room. However, unique capabilities of telemedicine robots are being developed that cannot be duplicated by hard-wired systems. Telemedicine robots can be equipped with a digital stethoscope (19). They can perform physical examination elements that require tactile communication – such as the determination of the Glasgow coma scale (20). A robotic arm can be used to remotely perform point-of-care ultrasonography. This has been successfully operationalized for cardiac, abdomino-pelvic, and vascular indications (21,22). Telemedicine robots have been developed that can place peripheral or central venous catheters (23). The development of surgical robots that incorporate tomographic capability and that can perform battlefield stabilization procedures in either autonomous or teleoperative modes (24) provide a glimpse of the potential for telemedicine robots in the ICU.
Although healthcare systems currently implementing telemedicine services will likely choose either a hard-wired or a robotic model – largely based on cost and the volume of required services - we believe the optimal telemedicine system of the future will and should incorporate both technologies. Real-time data acquisition coupled with ready access to timely interventions constitute the basis for faster deployment of precision health care strategies in the ICU setting.
References
- Kelley MA, Angus D, Chalfin DB, Crandall ED, et al. The critical care crisis in the United States: A report from the profession. Chest. 2004;125:1514-7. [CrossRef] [PubMed]
- Pronovost PJ, Angus DC, Dorman T, Robinson KA, et al. Physician staffing patterns and clinical outcomes in critically ill patients. JAMA. 2002;288:2151-62. [CrossRef] [PubMed]
- Rosenfeld BA, Dorman T, Breslow MJ, et al. Intensive care unit telemedicine: alternate paradigm for providing continuous intensivist care. Crit Care Med. 2000;28:3925-31. [CrossRef] [PubMed]
- Kahn JM, Cicero BD, Wallace DJ, Iwashyna TJ. Adoption of intensive care unit telemedicine in the United States. Crit Care Med. 2014;42:362-8. [CrossRef] [PubMed]
- Kumar G, Falk DM, Bonello RS, et al. The costs of critical care telemedicine programs: A systematic review and analysis. Chest. 2013;143:19-29. [CrossRef] [PubMed]
- Thomas EJ, Lucke JF, Wueste L. Association of telemedicine for remote monitoring of intensive care patients weith mortality, complications and length of stay. JAMA. 2009;302:2671-78. [CrossRef] [PubMed]
- Nassar BS, Vaughan MS, Jiang L, Reisinger HS, et al. Impact of an intensive care unit telemedicine program on patient outcomes in an integrated health care system. JAMA Intern Med. 2014;174:1160-7. [CrossRef] [PubMed]
- Ventataraman R, Ramakrishnan N. Outcomes related to telemedicine in the intensive care Unit. Crit Care Clinics 2015;31:225-37. [CrossRef] [PubMed]
- Youn BA. ICU process improvement using telemedicine to enhance compliance and documentation for the ventilator bundle. Chest. 2006;130:(meeting abstracts) 226S-c.
- Hoonakker PL, Carayon P, McGuire K, et al. Motivation and job satisfaction of tele-ICU nurses. J Crit Care. 2013;28:890-901. [CrossRef] [PubMed]
- Franzini L, Sail KR, Thomas EJ, et al. Costs and cost-effectiveness of a telemedicine intensive care unit program in six intensive care units in a large health care system. J Crit Care. 2011;26:329e1-6. [CrossRef] [PubMed]
- Lilly CM, Cody S, Zhao H. Hospital mortality, length of stay and preventable complications among critically ill patients before and after tele-ICU reengineering of critical care processes. JAMA. 2011;305:2175-83. [CrossRef] [PubMed]
- Lilly CM, Zubrow MT, Kempner KM, Reynolds H, et al. Critical Care telemedicine: Evolution and state of the art. Crit Care Med. 2014;42:2429-36. [CrossRef] [PubMed]
- Chung KK, Grathwohl KW, Poropatich RK, Wolf SE, et al. Robotic telepresence: Past present and future. Journal of Cardiothoracic and Vascular Anesthesia. 2007;21:593-6. [CrossRef] [PubMed]
- Murray C, Ortiz E, Kubin C. Application of a robot for critical care rounding in small rural hospitals. Crit Care Nurs Clin North Am. 2014;26:477-85. [CrossRef] [PubMed]
- Reynolds EM, Grujovski A, Wright T, Foster M, Reynolds HN. Utilization of robotic remote presence technology within North American intensive care units. Telemedicine and e-health. 2012;18:507-15. [CrossRef] [PubMed]
- Sucher JF, Todd SR, Jones SL, Throckmorton T, et al. Robotic telepresence: A helpful adjunct that is viewed favorably by critically ill surgical patients. Am J Surg. 2011;202:843-7. [CrossRef] [PubMed]
- Vespa PM, Miller C, Hu X, Nenov V, et al. Intensive care unit robotic telepresence facilitates rapid physician response to unstable patients and decreased cost in neurointensive care. Surgical Neurology. 2007;67:331-7. [CrossRef] [PubMed]
- Lakhe A, Sodhi I, Warrier J, Sinha V. Development of digital stethoscope for telemedicine. J Med Eng Technol. 2016;40:20-4. [CrossRef] [PubMed]
- Adcock AK, Kosiorek H, Parich P, Chauncey A, Wu Q, Demaerschalk BM. Reliability of robotic telemedicine for assessing critically ill patients with the full outline of unresponsiveness score and Glasgow coma scale. Telemed J E Health. 2017 Jan 13. [CrossRef] [PubMed]
- Avgousti S, Panayides AS, Jossif AP, Christoforou EG, et al. Cardiac ultrasonography over 4G wireless networks using a tele-operated robot. Healthc Technol Lett. 2016;3:212-7. [CrossRef] [PubMed]
- Georgescu M, Sacccomandi A, Baudron B, Arbeille PL. Remote sonography in routine clinical practice between two isolated medical centers and the university hospital using a robotic arm: A 1-year study. Telemed J E Health. 2016;22:276-81. [CrossRef] [PubMed]
- Kobayashi Y, Hong J, Hamano R, Okada K, Fujie MG, Hashizume M. Development of a needle insertion manipulator for central venous catheterization. Int J Med Robot. 2012;8(1):34–44. [CrossRef] [PubMed]
- Garcia P, Rosen J, Kapoor C, Noakes M, et al. Trauma Pod: a semi-automated telerobotic surgical system. Int J Med Robot. 2009;5:136-46. [CrossRef] [PubMed]
Cite as: Nikhanj NS, Raschke RA, Groves R, Cavallazzi R, Ramos KS. Telemedicine using stationary hard-wire audiovisual equipment or robotic systems in critical care: a brief review. Southwest J Pulm Crit Care. 2017;15(1):50-3. doi: https://doi.org/10.13175/swjpcc087-17 PDF
Organ Failure in Acute Pancreatitis and Its Impact on Outcome in Critical Care
Namrata Maheshwari, MD, IDCCM
Arun Kumar, MD
Zafar A Iqbal, MD
Amit K Mandal, DNB,DTCD
Abhishek Vyas, MBBS
Jai D Wig, MS
Department of Critical Care Medicine and Pulmonology
Fortis Hospital
Mohali, Punjab, 160062
India
Abstract
The most important determinant of mortality in acute pancreatitis is organ failure (OF). The aim of this prospective observational study was to determine the incidence of organ failure in acute pancreatitis and its relation with the extent of necrosis and outcome. Sixty-one patients were divided into 3 groups: no organ failure (NOF), transient organ failure (< 48 hrs) (TOF) or persistent organ failure (> 48 hrs) (POF). Of 61 patients, 30 patients had no organ failure (49.1%), while 11 patients (18%) had TOF and 20 patients (32.7%) had POF. The mean age was 46.5 yrs with male predominance. Pulmonary and renal failures were the most common (32%), followed by CVS (cardiovascular system), coagulation system and CNS (central nervous system). Fourteen (46.4%) patients had one or two OF, 17 (56.6%) had more than two OF. There were no deaths in patients with up to two organ failures but a 70% (7) death rate in those with three organ involvement, 80% (4) with four and 100% with five OF. The percentage of pancreatic necrosis was evaluated for its relationship with organ failure. In the NOF group 19 (63.3%) patients had no necrosis, as compared to 11 patients with necrosis in TOF and POF groups (35.4%). Out of 61 patients, 13 patients died. All 13 patients who expired belonged to the POF group (p <.001). Early persisting and deteriorating organ failure had the worst outcomes. There was an increase in mortality with an increasing number of organs involved. The extent of necrosis was directly related with incidence of organ failure.
Introduction
Acute pancreatitis (AP) is characterized by a variable clinical course varying from a mild self-limited disease (80-90%) to a clinically severe acute pancreatitis (SAP) in 10-20% (1-4). Despite advances in knowledge and treatment of AP, the identification of patients with clinically severe disease on admission remains difficult (1) and the mortality in several series continues to be around 20% (2,5).
The factors responsible for high mortality in patients with SAP are organ failure (OF) and pancreatic necrosis (6,7). The reported incidence of OF in SAP varies from 28-76 % (5,8,9). The occurrence of organ dysfunction and progressive organ failure has a major impact on outcome. Many patients who succumb to AP within the first two weeks of disease onset do so from overwhelming multiorgan failure (10,11). Other studies have also reported that prognosis deteriorated with an increase in number of organs involved (12,13). Banks and Freeman (14) studied the correlation between mortality and organ failure in patients with acute pancreatitis and documented a median mortality of 3% in patients with single organ failure and 47% in patients with multisystem organ failure. Another study documented that the overall mortality (47.8%) correlated with the number of organs failing (6). The definition of multiorgan failure is broad and encompasses transient to persistent or severe multiorgan failure that requires critical care support (15). Patients with persistent organ failure have a higher mortality as compared to patients where organ failure resolves (16). Johnson and Hial (17) showed that patients with OF that resolved within 48 hours(transient) have a low risk of complications and death in comparison to patients who have persistent organ failure(OF persisting for 3 or more days) and have a greater than one in three risk of fatal outcome. Information regarding the prediction of persistent organ failure in patients with acute pancreatitis is not available (18).
One of the factors linked to the development of OF is the extent of pancreatic necrosis. Some workers have found a correlation between the extent of necrosis and OF (19). The question of the relationship between infected necrosis and OF remains unsettled. There is no consistency in the literature on whether organ failure or infected necrosis is the main determinant of severity in acute pancreatitis. The aim of study was to study the occurrence of organ failure in acute pancreatitis and determine the influence of organ failure on mortality in patients with acute pancreatitis.
Materials and Methods
This study was a prospective study under taken during 18 months (December 2011 to May 2013) in the Departments of Gastroenterology, General Surgery and Medical Intensive Care Unit in Fortis Hospital, Mohali, Punjab, a 260 bedded multispecialty tertiary care hospital in Northern India.
The study sample included all consecutive patients diagnosed with acute pancreatitis referred to Gastroenterology or General surgery units fulfilling the inclusion and exclusion criteria. All the patients were assessed for demographic profile and detailed symptom profile. After a detailed clinical examination relevant investigations were repeated as and when required. Patients were monitored for the presence and severity of organ failure every day during the first week, subsequent local complications, subsequent episodes of sepsis, and death or other outcomes during the same hospital admission.
Organ failure was defined as per modified multiple organ failure score (MMOFS). Transient organ failure was defined as organ failure present for less than 48 hours, and persistent organ failure was recorded when organ failure was present for more than 48 hours, where day 0 was the day of entry to the study and day one started at 8.00am on the day after entry. The course in hospital and final outcome was recorded. Cross tabulations were made with outcome, in particular with mortality.
Statistical Analysis. The data are presented as mean ± SD or median and interquartile range, as appropriate. The Mann- Whitney U-test was used for statistical analysis of skewed continuous variables and ordered categorical variables. For normally distributed data The t-test was applied. Pearson χ2 test or Fisher’s exact test was used for analysis of categorical variables with two categories. A p value of <0.05 was considered to indicate statistical significance. All calculations were performed using SPSS® version 15 (Statistical Packages for the Social Sciences, Chicago, IL).
Results
The study was comprised of 61 patients who met the inclusion criteria with diagnosis of acute pancreatitis. The study group was further divided as per organ failure into three groups:
- No organ failure (NOF)
- Transient organ failure ( < 48 hrs) (TOF)
- Persistent organ failure ( > 48 hrs) (POF)
Demographic Distribution. The mean age of the patients was 46.5 years. The majority of patients were in the age group of 30-50 years. In this study the youngest patient was 17 years old and oldest was 87 years old (Figure 1).
Figure 1. Age distribution with increased number of organs involvement.
The male to female ratio was found to be 2.4:1 (Figure 2).
Figure 2. Sex distribution.
Male predominance was found in all groups (53.3 %, 81.8%, and 90 % in the no organ, transient and persistent organ failure group respectively).
Comorbid Conditions. A majority of the patients (38) in our study group had no associated comorbid conditions while 23 patients (37.8%) had a previous comorbid condition. Hypertension was the most common comorbid condition, seen in almost 31 % of the patients at the time of admission. Type 2 diabetes was the second most common condition noted in 24.6%, followed by hypothyroidism (4.9%), asthma, depression, cardiomyopathy and Guillain-Barré syndrome in 1.6% each (Table 1).
Table 1. Comorbid conditions associated in our study group.
We could not find any association between co morbidities and mortality as 9 (62.9%) deaths occurred in the no comorbidity group as compared to 4 (30.8%) deaths in the co morbidities group (p=0.880).
Etiology. The most common etiologies of pancreatitis in our study group were alcohol and gall stones (n=24, 39% each) (Table 2).
Table 2. Etiology of acute pancreatitis.
Other causes were idiopathic (n=10, 17%), hypertriglyceridemia (n=2, 3%) and pancreatic divisum (n=1, 2%).
Percentage of Necrosis and Organ Failure. The percentage of necrosis on radiological imaging (in 46 patients) was evaluated for its relationship with organ failure. In the NOF group 19 (63.3%) patients had no necrosis (0%), 4 (13.3%) patients had <30% necrosis, 1 (3.3%) had 30-50% and 4 (13.3%) had >50% necrosis (Figure 3).
Figure 3. Relation between organ failure and pancreatic necrosis.
In the TOF group, 4 (36.4%) patients revealed no necrosis on contrast-enhanced computerized tomography (CECT) of the abdomen, <30% necrosis in 2 (18.2%) patients, 30-50% necrosis in 3 (27.3%) and >50% in 1 (9.1%) patient (Figure 3).
In POF group no necrosis was detected in 3 (15%) patients, <30 % in 2 (10%), 30-50% in 1 (5%) and >50% in 2 (10%) patients. The relationship between the amount of necrosis was directly related with incidence of organ failure and this correlation was found to be statistically significant (Figure 3).
MMOFS and Mortality. We divided our study in 3 groups, no organ failure, transient (<48 hrs) and persistent (>48 hrs) organ failure to understand the nature and dynamics of organ failure. Groups were further divided in early onset (<7days), late onset (>7days). Organ failure was calculated by the Modified multiorgan failure score (MMOFS). Daily MMOFS was calculated in all patients up to 7 days. MMOFS difference was calculated by MMOFS 7 (MMOFS at day 7) – MMOFS 1 (at the time of admission). On the basis of MMOFS difference groups were further divided into same (if difference was 0), improving (if deference was negative value), or deteriorating (if deference was a positive value) groups (Figure 4).
Figure 4. Comparison of outcome with MMOFS difference.
MMOFS difference was found to be highly significantly (ANOVA, p<0.001 each) correlated with organ failures and outcome. In our study no deaths occurred in the transient OF groups (early transient, late transient and transient deteriorating). We attributed this to the dynamics that transient OF could resolve with treatment and had a better outcome than persistent OF. Among the 13 deaths reported in our study, 46.2 % were in the early (<7 days) OF group compared to the late (>7 days) OF group (20%).
Organ Involvement. Pulmonary and renal failures were the most common organ involvements noted among our study group (32% each). This was followed by cardiovascular system (22%), coagulation system (8%) and central nervous system (6%) (Figure 5).
Figure 5. Organ failure by system.
Organ involvement and mortality. Fourteen (46.4%) patients had one or two OF and 17 (56.6%) had more than two OF (table 3). Comparison of the number of organ failures to mortality was statically significant (p<0.001) (Figure 6).
Figure 6. Outcome in patients with increasing organ involvement.
We found that there was an increase in incidence of mortality with an increase in the number of organs involved. There were no deaths in patients with up to two organ failures; it increased with increasing number of organs involved (Table 3).
Table 3. Organ failure and mortality.
The mortality rate was 70% (n=7) with three organ involvement, 80 % (n=4) with four and 100% with five OF.
Discussion
Severe acute pancreatitis is a systemic disease and characterized by acute onset and rapid progression, with a high incidence of complications and serious morbidity (20). An international multidisciplinary classification of acute pancreatitis severity is based on local and systemic determinants of severity. The local determinants relate to presence of pancreatic necrosis, and whether the necrosis is infected or sterile. The systemic determinants relate to whether there is organ failure or not, and if present, whether it is transient or persistent. The presence of both infected pancreatic necrosis and persistent organ failure has a greater impact on severity than either determinant alone. Based on these principles, the severity is classified as mild, moderate, severe or critical (21).The three most common systems involved are renal, lung, and cardiovascular system. Respiratory complications are frequent in acute pancreatitis and respiratory dysfunction is a major component of multiple organ dysfunction syndrome (22,23). In a population based study, 15.05% of patients with AP had a diagnosis of acute renal failure (24).
The present study showed that the difference in age was not significantly different between the groups. There are some studies which showed an association between advancing age as a predictor of organ failure and mortality. Wig et al. (6) studied 161 patients and concluded that age of the patients was a risk factor for multiple organ failure. Li et al. (25) studied 181 patients with SAP and found a correlation of age with OF (<.001). Frey et al26 also showed that the number of complications was positively correlated with the age of patients. Older age and number of complications were strong predictors of organ failure among patients with SAP. Though we recorded a higher incidence of organ failures and mortality in a younger age group of 40-45, the difference was attributed to a small number of patients above 65 years in our study as compared to studies done in the western world.
The bedside index for severity in acute pancreatitis (BISAP) score represents a simple way to identify patients at risk for increased mortality and the development of intermediate markers of severity within 24 hours of presentation. In our series the BISAP score was significantly associated (p<.001) with organ failure as well as survival (p<.001). We found 9 out of 13 deaths in the >3 score group and four deaths at a BISAP score of 2 as compared to zero mortality in the BISAP score 1 and 0 group. Kim et al. (27) also compared BISAP, the serum procalcitonin (PCT), and other multifactorial scoring systems simultaneously, concluded that BISAP is more accurate for predicting the severity of acute pancreatitis than the serum procalcitonin, APACHE-II, Glasgow, and modified CT severity index (MCTSI) scores. Chen et al. (28) evaluated the accuracy of BISAP in predicting the severity and prognosis of acute pancreatitis (AP) in 497 Chinese patients. They conclude that BISAP score is valuable in predicting the severity of AP and prognoses of SAP in Chinese patients.
Contrast enhanced computed tomography (CECT) is considered the gold standard for the diagnosis of pancreatic necrosis and peripancreatic collections. CT assessment correlates with the clinical course of the disease and recognized variables of disease severity. We ordered CECT in all patients on the second or third day after admission rather than at the time of admission. Additional contrast-enhanced CT scans were ordered at intervals during the hospitalization to detect and monitor the course of intra-abdominal complications of acute pancreatitis, such as the development of organized necrosis, pseudocysts, and vascular complications including pseudoaneurysms. In our study CT severity index (CTSI) > 7 at admission did not correlate well with organ failure or mortality (p=NS), although the percentage of necrosis had significant correlation with organ failure. Our results are similar to many studies reported in the literature. Simchuk et al. (29) performed a study on 268 patients with acute pancreatitis. They concluded CTSI > 5 correlated significantly with death. Similar results were also obtained by Leung et al. (30) on 121 patients studied retrospectively, and they concluded that CTSI is superior to Ranson’s score and APACHE II score in predicting outcome in pancreatitis. However a few studies found no association between grade of necrosis and outcome of pancreatitis. Shinzeki et al. (31) did not find any correlation between necrosis evident on CECT at admission and outcome of SAP (p=0.061). Another study by Lankisch et al. (32) also did not find any correlation between necrosis and organ failure.
In our study pulmonary and renal were the most common organ failures observed (32% each). The total number of organ failures at admission was also significantly different in both groups (p=0.001), however none of the organ failures independently proved to be a significant predictor of mortality. MMOFS difference was found to be highly significantly correlated with organ failures and outcome. Among the 13 deaths reported in our study, 46.2 % were in the early (<7 days) OF group compared to the late (>7 days) OF group (20%). Our series also showed comparable results with other studies suggesting that early organ failure is the major predictor of poor outcome MMOFS difference was found to be highly significantly (ANOVA, p<0.001 each) correlated with organ failures and outcome. In our study no deaths occurred in the transient OF groups (early transient, late transient and transient deteriorating). We attributed this to the dynamics that transient OF could resolve with treatment and had a better outcome than persistent OF. Among the 13 deaths reported in our study, 46.2 % were in the early (<7 days) OF group compared to the late (>7 days) OF group (20%). Our series also showed comparable results with other studies suggesting that early organ failure is the major predictor of poor outcome (p=0.002) compared to late organ failure (p=0.400).
We found that early persistent OF had a 66.6% mortality as compared to persistent deteriorating organ failure which also had a very high mortality (72.2%). Very few studies have reported on the dynamics of OF with MMOFS. Johnson et al. (19) in a study of 290 patients with SAP had 116 patients with no OF and 147 patients with OF at the time of admission subdivided those with OF into those with persistent (OF lasting for>48 hours) and transient (OF lasting for<48hours) organ failure. Mortality was 36.3% in persistent and 5% in transient OF group. No patients without OF died.
On analysis of the 13 patients who expired, 4 patients died early (<7 days) and 9 deaths were late (>7 days). OF was the main cause of death in both groups, however all patients with sepsis died later. In the study of Yang et al. (33) the most important and common cause of death for patients with fulminant pancreatitis was multiple organ dysfunction syndrome, which usually was the consequence of systemic inflammation response syndrome in the early stage, and severe infection in the later stage, respectively.
Conclusions
Patients with persistent organ failure have a higher mortality. Early persisting and deteriorating organ failure had the worst outcome of among patients with acute pancreatitis. There was an increase in mortality with increasing number of organs involved. The extent of necrosis was directly related with the incidence of organ failure.
References
-
Bollen TL, Singh VK, Maurer R, Repas K, van Es HW, Banks PA, Mortele KJ. A comparative evaluation of radiologic and clinical scoring system in the early prediction of severity in acute pancreatitis. Am J Gastroenterol. 2012;107:612-9. [CrossRef] [PubMed]
-
Zyromski NJ. Necrotizing pancreatitis in 2010: an unifinished odyssey. Ann Surg. 2010; 251:794-5. [CrossRef] [PubMed]
-
Kylanpaa L, Rakonczay Z, O' Reilly DA. The clinical course of acute pancreatitis and the inflammatory mediators that drive it. Int J inflammation. 2012;2012:360685. [CrossRef] [PubMed]
-
Refinetti RA, Martinez R. Necrotising pancreatitis: update and when to operate. Clinical Medicine and Diagnostics. 2012;2:20-6.
-
Poves Prim I, Fabregat Pous J, García Borobia FJ, Jorba Martí R, Figueras Felip J, Jaurrieta Mas E. Early onset of organ failure is the best predictor of mortality in acute pancreatitis. Rev Esp Enform Dig (Madrid). 2004;96:705-13. [PubMed]
-
Wig JD, Bharathy KG, Kochhar R, Yadav TD, Kudari AK, Doley RP, Gupta V, Babu YR. Correlates of organ failure in severe acute pancreatitis. JOP. 2009;10:271-5. [PubMed]
-
Mole DJ, Olabi B, Robinson V, Garden OJ, Parks RW. Incidence of individual organ dysfunction in fatal acute pancreatitis: analysis of 1024 death records. HPB (Oxford). 2009;11:166-70. [CrossRef] [PubMed]
-
Halonen KI, Pettilä V, Leppäniemi AK, Kemppainen EA, Puolakkainen PA, Haapiainen RK. multiple organ dysfunction associated with severe acute pancreatitis. Crit Care Med. 2002;30:1274-9. [CrossRef] [PubMed]
-
Lytras D, Manes K, Triantopoulou C, Paraskeva C, Delis S, Avgerinos C, Dervenis C. Persistent early organ failure: defining the high-risk group of patients with severe acute pancreatitis? Pancreas. 2008;36:249-54. [CrossRef] [PubMed]
-
Vege SS, Gardner TB, Chari ST, Munukuti P, Pearson RK, Clain JE, Petersen BT, Baron TH, Farnell MB, Sarr MG. Low mortality and high morbidity in severe acute pancreatitis without organ failure: a case for revising the Atlanta classification to include moderately severe acute pancreatitis. Am J Gastroentrol. 2009;104:710-5. [CrossRef] [PubMed]
-
Frey CF, Zhou H, Harvey DJ, White RH. The incidence and case fatality rates of acute biliary, alcoholic and idiopathic pancreatitis in California 1994-2001. Pancreas. 2006;33:336-44. [CrossRef] [PubMed]
-
Buter A, Imrie CW, Carter CR, Evans S, McKay CJ. Dynamic nature of early organ dysfunction determines outcome in acute pancreatitis. Br J Surg. 2002;89:298-302. [CrossRef] [PubMed]
-
Mofidi R, Duff MD, Wigmore SJ, Madhavan KK, Garden OJ, Parks RW. Association between early systemic inflammatory response, severity of multiorgan dysfunction and death in acute pancreatitis. Br J Surg. 2006:93:738-44. [CrossRef] [PubMed]
-
Banks PA, Freeman ML. Practice guidelines in acute pancreatitis. Am J Gastroenterol. 2006;101:2379-2400. [CrossRef] [PubMed]
-
Pandol SJ, Saliya AK, Imrine CW, Banks PA. Acute pancreatitis :Bench to bed side : Gasroentrology. 2007;133:1127-51. [CrossRef] [PubMed]
-
de-Madaria E, Soler-Sala G, Lopez-Font I, Zapater P, Martínez J, Gómez-Escolar L, Sánchez-Fortún C, Sempere L, Pérez-López J, Lluís F, Pérez-Mateo M. Update of Atlanta classification of severity of acute pancreatitis: should a moderate category be included. Pancreatology. 2010;10: 613-9. [CrossRef] [PubMed]
-
Johnson CD, Abu-Hilal M. Persistent organ failure during the first week as a marker of fatal outcome in acute pancreatitis. Gut. 2004;53;1340-4. [CrossRef] [PubMed]
-
Mentula P, Kylanpaa ML, Kemppainen E. Early prediction of organ failure by combined markers in patients with acute pancreatitis. Br J Surg 2005; 92: 68-75. [CrossRef] [PubMed]
-
Garg PK, Madan K, Pande GK, Khanna S, Sathyanarayan G, Bohidar NP, Tandon RK. Association of extent and infection of pancreatic necrosis with organ failure and death in acute necrotizing pancreatitis. Clin Gastroentrol Hepatol. 2005;3:159-66. [CrossRef] [PubMed]
-
Pavlidis P, Crichton S, Lemmich Smith J, Morrison D, Atkinson S, Wyncoll D, Ostermann M. improved outcome of severe acute pancreatitis in the intensive care unit. Crit Care Res Pract. 2013;2013:897107. [CrossRef] [PubMed]
-
Dellinger EP, Forsmark CE, Layer P, et al. Determinant- based classification of acute pancreatitis severity: an international multidisciplinary consultation. Ann Surg. 2012;256:875-80. [CrossRef] [PubMed]
-
Chan YP, Ning JW, Je F. Establishment of critical period of severe acute pancreatitis associated lung injury. Hepatobiliary Pancreas Dis Int. 2009;8: 535-40. [PubMed]
-
Pastor CM, Matthy MA, Frossard JL. Pancreatitis associated acute lung injury – new insights. Chest. 2003;124: 2341-51. [CrossRef] [PubMed]
-
Lin HY, Lai JI, Lai YC, Lin PC, Chang SC, Tang GJ.Acute renal failure in severe pancreatitis: a population based study. Ups J Med Sci. 2011;116:155-9. [CrossRef] [PubMed]
-
Li XY, Wang XB, Liu XF, Li SG. Prevelence and risk factor of organ failure in patients with severe acute pancreatitis. World J Emerg Med. 2010;1(3):201-4. [PubMed]
-
Frey C, Zhou H, Harvey D. Co-morbidity is a strong predictor of early death andmulti-organ system failure among patients with acute pancreatitis. J Gastrointest Surg. 2007;11:733-42. [CrossRef] [PubMed]
-
Kim BG, Noh MH, Ryu CH, Nam HS, Woo SM, Ryu SH, Jang JS, Lee JH, Choi SR, Park BH. A comparison of the BISAP score and serum procalcitonin for predicting the severity of acute pancreatitis. Korean J Intern Med. 2013;28:322-9. [CrossRef] [PubMed]
-
Chen L, Lu G, Zhou Q, Zhan Q. Evaluation of the BISAP score in predicting severity and prognoses of acute pancreatitis in Chinese patients. Int Surg. 2013;98(1):6-12. [CrossRef] [PubMed]
-
Simchuk EJ, Traverso LW, Nukui Y, Kozarek RA. Computed tomography severity index is a predictor of outcomes for severe pancreatitis. Am J Surg. 2000;179:352-5. [CrossRef] [PubMed]
-
Leung TK, Lee CM, Lin SY, Chen HC, Wang HJ, Shen LK, Chen YY. Balthazar computed tomography severity index is superior to Ranson criteria and APACHE II scoring system in predicting acute pancreatitis outcome. World J Gastroenterol. 2005;11:6049-52. [PubMed]
-
Shinzeki M, Ueda T, Takeyama Y, Yasuda T, Matsumura N, Sawa H, Nakajima T, Matsumoto I, Fujita T, Ajiki T, Fujino Y, Kuroda Y. Predictors of early death in severe acute pancreatitis. J Gastroenterol. 2008;43:152-8. [CrossRef] [PubMed]
-
Lankisch PG, Pflichthofer D, Lehnick D. No strict correlation between necrosis and organ failyre in acute pancreatitis. Pancreas. 2000;20:319-22. [CrossRef] [PubMed]
-
Yang XN, Guo J, Lin ZQ, Huang L, Jin T, Wu W, Wen L, Zhang ZD, Xia Q, Hu WM. The study on causes of death in fulminant pancreatitis at early stage and late stage. Sichuan Da Xue Xue Bao Yi Xue Ban. 2011;42(5):686-90. [PubMed]
Reference as: Maheshwari N, Kumar A, Iqbal ZA, Mandal AK, Vyas A, Wig JD. Organ failure in acute pancreatitis and its impact on outcome in critical care. Southwest J Pulm Crit Care. 2015;10(5):253-64. doi: http://dx.doi.org/10.13175/swjpcc055-15 PDF
Physical Examination in the Intensive Care Unit: Opinions of Physicians at Three Teaching Hospitals
Rodrigo Vazquez, MD1
Cristina Vazquez Guillamet, MD1
Mohamed Adeel Rishi, MD2
Jorge Florindez, MD4
Priya S Dhawan, MD3
Sarah E. Allen, MD1
Constantine A Manthous, MD5
Geoffrey Lighthall MD, PhD6
Affiliations: University of New Mexico School of Medicine1 Albuquerque NM. McNeal Hospital2, Berwyn Il. Mayo Clinic Arizona3, Scottsdale AZ. Bridgeport Hospital4, Bridgeport CT. Yale School of Medicine5, New Haven CT. Stanford University School of Medicine6, Stanford CA.
Study Sites: Stanford University Medical Center, Stanford CA. McNeal Hospital, Berwyn Il and Bridgeport Hospital, Bridgeport CT.
Abstract
Purpose: Technological advances in intensive care unit may lead physicians to question or omit portions of the physical exam. Our goal is to assess the opinions of intensive care unit physicians about physical examination in modern day medicine.
Methods: Subjects included physicians on medical intensive care unit teams at one university hospital and two university-affiliated teaching hospitals. Participants responded to an interview divided into two sections: (1) A semi-structured interview including open-ended questions on the management of four critical care scenarios and on the utility of physical exam; (2) Multiple-choice questions about physical exam.
Main Results: The response rate was 100%. A total of 122 individuals, 16(13%) attendings, 24(20%) fellows and 82(67%) residents, responded. Half 61 (50%) considered physical examination to be of limited utility in the intensive care unit. Fifteen percent of answers to the clinical scenarios were reasoned based on physical examination. Most extended the definition of physical examination to include data derived from monitoring 119(97%), life support 121(99%) and bedside imaging devices 112(92%). Residents 45(37%), students 35(29%) and nurses 35(29%) were recognized as the team members who examine patients the most.
Conclusion: Physical examination was considered useful by half of the physicians. Percussion is the least appreciated component. The role of nurses examining patients is recognized. A new definition of physical examination that extends beyond the patient to include monitoring, life support and bedside imaging is proposed to revitalize bedside clinical medicine.
For accompanying editorial click here.
Introduction
Physical examination is one of the mainstays of clinical activities at the bedside. The many maneuvers and signs of the physical exam were developed and described over the last two centuries when most patients presented in advanced states of disease with obvious physical examination findings (1). In the last few decades, advances in fields of imaging, laboratory and bedside monitoring technologies have increased expectations for early and accurate diagnoses, often before physical exam findings become apparent (2).
In Critical Care Units (ICU) patients have severe presentations of diseases, making it likely to encounter diagnostic physical examination findings; however ICUs have easy access to imaging and automated physiologic measurements that may lead physicians to question, or omit portions, of the physical examination.
In this context, we sought the opinions of physicians working in intensive care units about physical examination in modern day medicine.
Material and Methods
The study was divided into two sections. The first is based on mixed methods analysis (qualitative and quantitative) of semi-structured interviews with open-ended questions. The second is based on the quantitative analysis of multiple-choice questions.
Setting
The study was conducted in 2011, in three ICUs in three states. One of three hospitals (Stanford) was a 32-bed closed medical-surgical unit in a university medical center hospital. The other two hospitals were 16-17 bed closed medical units at university-affiliated community teaching hospitals. All three hospitals had postgraduate residencies in Internal Medicine and Pulmonary and Critical Care Medicine, and were equipped with electronic medical records systems and computer acquisition and storage of bedside data. At the time of the study, Stanford had begun an initiative to increase the use and appreciation of physical examination in its medical school (3). No other confounding variables were apparent. The Investigational Review Boards of each center approved the protocol independently and waived the need for written consent.
Eligible subjects included residents, critical care fellows, and attending physicians on ICU rotations. Investigators approached all candidates for possible participation; subjects were informed that the study would evaluate their approach to diagnosis and treatment of ICU patients but not about its specific focus on physical examination.
Data collection
Demographic data collected included age, gender, type of specialty and subspecialty training, and level of training.
First section
Semi-structured interviews on how four hypothetical ICU clinical vignettes would be managed; questions were chosen by consensus of the authors and responses were open-ended.
Subjects were presented with this introductory statement: “I’m going to present you with four clinical scenarios. I would like you to explain how you would manage these clinical scenarios in real life. This is not an exam. We are just interested in how physicians practice.” The following four case scenarios were then introduced: “You have to manage an Intensive Care Unit patient with: 1) hypoxemia, 2) hypotension, 3) dyspnea and 4) oliguria. What would you do?”
After discussing management of the case scenarios, subjects were then asked: “What’s your opinion about the utility of physical exam in the ICU?”
Second section
Multiple-choice questions were then asked of each subject:
- How frequently do you examine your patients? Answer choices (or options): “Always, sometimes, never”
-Who do you think examines their patients the most? Answer choices: “Attendings, fellows, residents, students or nurses”
-Which data obtained at the bedside should be included in an updated definition of physical exam in the ICU? Inspection? palpation? percussion? auscultation? venous lines? arterial line data? ventilator data?, bedside ultrasonography? Answer options: “Strongly agree, agree, disagree, strongly disagree”
The interview was pilot tested in six subjects to verify subjects had a clear understanding of the questions. Investigators performing the interviews were the same within each center and were trained prior to subject enrollment. Investigators read the questions in the same order. Subsequent questions were not revealed until the previous question had been answered. Responses were recorded and transcribed.
Analysis
Data analysis used a mixed-methods approach for the first section. The transcriptions were analyzed looking for key actions or ideas around which the rest of the response was organized, we called these “codes”. For example if an individual answered: “I would auscultate the lungs, order an arterial blood gas and a chest radiograph ” the codes would be lung auscultation, arterial blood gas and chest radiograph. After analyzing all the answers we decided to group “codes” into categories and report them as percentages of all the answers provided, four clinical scenarios per each of the 122 participants. For the previous example the categories would include: auscultation, laboratory test and radiology.
Mention of the physical exam was categorized as: a) mentions physical examination (e.g. “ I would examine the patient…”), b) mentions physical examination or the intention to go to the bedside, c) describes a reasoned physical examination (e.g.“ I would auscultate the lungs, if I heard wheezes then I would…”).
Illustrative comments were highlighted. The findings of each interviewer were checked against each other. In case of discrepancy, answers were compared to reach a consensus.
The analysis of the second section was quantitative.
We used the statistical package Stata 11. Chi2 was used to compare rates. Factorial logistic regression and logistic regression were used to evaluate categorical and continuous data when appropriate. A p -value of <0.05 was considered significant.
Results
A total of 122 individuals were approached for study participation and all agreed to participate. The subjects included 16 (13%) attendings, 24 (20%) fellows and 82 (67%) residents. The average age was 32 years (range 24-65). There were 79 (65%) males. Most respondents had Internal Medicine training 116 (95%) and had attended medical school in the US 76 (62%).
First section
Clinical scenarios
Categories identified during the responses to the clinical scenarios are summarized in Table 1.
We report mention of the physical exam in three not mutually exclusive categories: a) mentions physical examination (e.g. “ I would examine the patient…”), b) mentions physical examination or the intention to go to the bedside, c) describes a reasoned physical examination (e.g.“ I would auscultate the lungs, if I heard wheezes then I would…”).
Answers to “What’s your opinion about the utility of physical exam in the ICU?” The physical exam was considered to be of “limited utility” by 61(50%) of the respondents. Table 2 includes answers that illustrate opinions for and against the utility of the physical exam.
According to the respondents, the components of the physical exam that remain useful in the intensive care unit are: a) general appearance; b) the neurological exam; c) abdominal exam since there are no adequate monitoring devices; d) anterior auscultation of the chest to detect pneumothoraces, effusions or cardiac murmurs; and e) examination of the skin.
Second section, multiple-choice questions
A. How frequently do you examine your patients?
Figure 1. Histogram with the percentages of each of the possible answers to question: How frequently do you examine your patients?
B. Who do you think examines patients the most? (Figure 2).
Figure 2. Histogram with the percentages for each of the possible answers to question: Who do you think examines patients the most?
C. Which data obtained at the bedside should be included in an updated definition of physical exam in the ICU?
At least 90% of the respondents agreed to include data obtained through inspection 112 (100%), auscultation 118 (97%), data from ventilators 121 (99 %), arterial lines 120 (98%), central lines 118 (97%), and bedside ultrasound 112(92%). Palpation 107(88%) and percussion 79 (65%) did not exceed the 90% threshold.
Besides the intergroup comparisons noted above, there were no statistically significant differences between responses based on level of training, age, gender, location of medical school training or hospital (p>0.05).
Discussion
We report the opinion of 122 physicians with regard to physical examination in the intensive care unit and the way they reported using the physical exam in four hypothetical clinical scenarios. We found that half of the physicians reported they considered physical exam useful, but only 15 percent mentioned physical exam in deducing answers to the clinical scenarios. Percussion was the least appreciated component of the physical exam. There was generalized agreement that the inclusion of data derived from bedside imaging, monitoring, and life support devices into an updated definition of physical examination would be valuable. Nurses and students were recognized as the team members who examined their patients the most. Study participants provided explanations behind their opinions.
The findings that only 50% of the physicians found the standard physical examination to be useful, and that only 15 % mentioned the physical exam in deducing their case scenario answers suggests a low appreciation for the standard physical exam. Available literature on the utility of the physical exam supports our current study findings. In one study the time spent at the bedside during clinical rounds was down to 11% from an historical 75%, with most of the time spent in hallways or conference rooms (4,5). In an ethnographic study, residents felt it was unnecessary to examine their patients in the ICU as long as they had monitoring and a good nurse (6).
Perceptions from patients and the general public support our findings that use of the physical exam is low. In a questionnaire to ambulatory patients, 56 patients perceived 113 omissions in their physician visit, the most common omissions being those related to what they felt were missed portions of the physical examination (7). Mass media has produced the following headlines: Physician revives a dying art: the physical; Is physical exam facing extinction? and Not on the Doctors’ checklist but touch matters (8-10).
Comments by our study participants help explain these findings. Participants had more confidence in the accuracy of data provided by monitoring devices and imaging than in findings of their physical exams. Some participants mentioned that it was difficult to convince peers to change management based on physical examination findings alone. Participants also reported there was lack of role modeling physicians performing physical exams.
Attending and fellow physicians were perceived as the team members who examine their patients the least; Attending and fellows validated this perception in reporting examining their patients sometimes or never in more than half of the cases.
An alternative explanation for this perception about the senior team members could be related to differences in diagnostic reasoning between trainees and more experienced physicians (11). Students and residents probably relay more in hypothetic deductive reasoning and collect larger amounts of data, including a more detailed physical examination, to reach a diagnosis. As they become more experienced and start working as fellows and attendings the use of short cuts, heuristics, increases and they reach a diagnosis with smaller amounts of data. Time constraints also make them relay in the information relayed by more junior team members.
Whatever the reason for this perception about senior team members may be, it explains, at least in part, the atrophy of physical examination skills during residency training (12), and feeds a downward spiral with graduates that examine their patients less and less.
Residents, nurses and students on the other hand were recognized as the ones who examined their patients the most. This observation expands the role of nurses in the ICU, and if confirmed by others could change the allocation of responsibilities in the multidisciplinary ICU team.
Although until now our discussion portrays the current poor standings of physical examination in the ICU, we also found hope.
Despite the small proportion of participants basing their reasoning on physical examination during the clinical scenarios, most responses included going to the bedside and almost all participants agreed on extending the physical examination beyond the patient to include data derived from monitoring, life support and bedside imaging devices.
Just as Laennec revolutionized bedside diagnosis with the introduction of the stethoscope (13), a new standardized definition of physical examination including these new bedside diagnostic tools, has the potential to greatly enrich clinical medicine and would reflect the practice of modern medicine better (14,15). Critical care medicine is in a privilege position to lead this conceptual change and spread it to other specialties.
Our study has several limitations. First of all, it describes opinions and behaviors in theoretical scenarios and the answers provided may not correlate with true physician practices. The order and choice of the clinical scenarios and questions may have biased the respondents negatively against the physical exam. In support of our results, once the participants learned about the focus of the study one would have expected an attempt to offer better impressions of themselves with an “over reporting” bias towards the physical examination. However, our results pointed in the opposite direction. It does not correlate the use of physical examination to outcomes.
In regards to the composition of the respondents, residents conformed the great majority. Although one could argue that this limits the generalizability of the results, the proportion of residents, fellows and attending physicians mimics that found in the ICU teams at the participating institutions. Our findings may not be generalized to hospitals in areas with limited resources.
Finally its main limitation and at the same time its main virtue is the generation of new questions that will require new studies with direct observation of team practices and their correlation to patient outcomes.
Conclusion
Physical examination was considered useful by half of the physicians. Percussion is the least appreciated component. The role of nurses examining patients is recognized. A new definition of physical examination that extends to include monitoring, life support and bedside imaging is proposed to revitalize bedside clinical medicine.
Conflict of interests: The authors declare that they have no conflict of interest.
References
- Walker HK, Hall WD, Hurst JW, Walker HK. The origins of the history and physical examination 3rd ed. Boston, MA: Butterworths; 1990.
- Berenguer J, Bruguera M, Gervas J, et al. The Physician of the Future. El Metge del Futur. Fundacion Educaion Medica, Barcelona, Spain; 2009. Available at: http://www.econ.upf.edu/~ortun/publicacions/MedicoDelFuturo.pdf (accessed 1/6/15).
- Verghese A, Horwitz RI. In praise of the physical examination. BMJ. 2009;339:b5448. [CrossRef] [PubMed]
- LaCombe MA. On bedside teaching. Ann Intern Med. 1997;126(3):217-20. [CrossRef] [PubMed]
- Miller M, Johnson B, Greene HL, Baier M, Nowlin S. An observational study of attending rounds. J Gen Intern Med. 1992;7(6):646-8. [CrossRef] [PubMed]
- Bosk CL. Forgive and remember: managing medical failure. 2nd ed. Chicago, IL. University of Chicago Press; 2003. [CrossRef]
- Kravitz RL, Callahan EJ. Patients' perceptions of omitted examinations and tests: A qualitative analysis. J Gen Intern Med. 2000;15(1):38-45. [CrossRef] [PubMed]
- Knox R. The Fading Art Of The Physical Exam. National Public Radio. 2010. Available at: http://www.npr.org/player/v2/mediaPlayer.html?action=1&t=1&islist=false&id=129931999&m=129984296 (accessed 1/6/15).
- Ofri D. Not on the doctor's checklist but touch matters. The New York Times. August 2, 2010.
- Grady D. Physician revives a dying art: the physical. The New York Times. October 11, 2010. Available at: http://www.nytimes.com/2010/10/12/health/12profile.html?pagewanted=all&_r=0 (accessed 1/6/15).
- Sackett DL, Tugwell P, Guyatt GH. Clinical epidemiology: a basic science for clinical medicine, 2nd ed. Boston: Little, Brown; 1991.
- Mangione S, Nieman LZ. Cardiac auscultatory skills of internal medicine and family practice trainees. A comparison of diagnostic proficiency. JAMA. 1997;278(9):717-22. [CrossRef] [PubMed]
- Laennec R. Traite de l’auscultation mediate. Bull Acad Natl Med. 1819;151:393-398.
- COBATRICE Domain 2: diagnosis: assessment, investigation, monitoring and data interpretation. Available at: http://www.cobatrice.org/Data/ModuleGestionDeContenu/PagesGenerees/en/02-competencies/0B-diagnosis/8.asp (accessed 1/6/15).
- American Association of Chest Physicians. Critical care ultrasonography. http://www.chestnet.org/Education/Advanced-Clinical-Training/Certificate-of-Completion-Program/Critical-Care-Ultrasonography (accessed 1/6/15).
Reference as: Vazquez R, Vazquez Guillamet C, Adeel Rishi M, Florindez J, Dhawan PS, Allen SE, Manthous CA, Lighthall G. Physical examination in the intensive care unit: opinions of physicians at three teaching hospitals. Southwest J Pulm Crit Care. 2015;10(1):34-43. doi: http://dx.doi.org/10.13175/swjpcc165-14 PDF